
Enhancing the scalability and memory usage of
HashSieve on multi-core CPUs

Artur Mariano
Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Christian Bischof
Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
christian.bischof@sc.tu-darmstadt.de

Abstract—The Shortest Vector Problem (SVP) is a key prob-
lem in lattice-based cryptography and cryptanalysis. While the
cryptography community has accumulated a vast knowledge of
SVP-solvers from a theoretical standpoint, the practical perfor-
mance of these algorithms is commonly not well understood. This
gap in knowledge poses many challenges to cryptographers, who
are oftentimes confronted with algorithms that perform worse in
practice then expected from theory. This is a problem because the
asymptotic complexity of the best algorithms plays a key role in
the construction of cryptosystems, but only practically appealing,
validated algorithms are accounted for in this process. Thus,
if one cannot extract the full potential of theoretically strong
algorithms in practice, efficient algorithms might be ruled out and
wrong assumptions are made when constructing cryptosystems.

In this paper, we take a step forward to fill this gap,
by providing a computational analysis of HashSieve, the most
practical sieving SVP-solver to date, and showing how its perfor-
mance can be enhanced in practice. To this end, we revisit the
parallel generation of random numbers, memory allocation and
memory access patterns. Employing scalable random sampling,
object memory pools, scalable memory allocators and aggressive
memory prefetching, we were able to improve the best current
implementation of HashSieve by factors of 3x and 4x, depending
on the lattice dimension, and set new records for the HashSieve
algorithm, thereby shrinking the gap between its theoretical
complexity and its performance in practice.

I. INTRODUCTION

Three decades ago, the cryptography community engaged
in an intensive search for cryptosystems that would be resistant
against attacks with quantum computers, due to the vulnera-
bility of classical cryptosystems, such as RSA, against these
attacks. Today, lattice-based cryptography stands out as one
of the most prominent post-quantum types of cryptography,
for several reasons. First of all, lattice-based cryptosystems
are efficient and very simple to implement. In addition, it
is known that lattice-based cryptosystems enjoy worst-case
hardness, a powerful property for cryptosystems. Roughly
speaking, this means that breaking the cryptosystem is at least
as hard as solving several lattice problems in the worst case.
Third, lattices can be used to implement fully-homomorphic
encryption, a promising technique for cryptosystems.

Lattices are discrete subgroups of the n-dimensional Eu-
clidean space Rn, with a strong periodicity property. A lattice
L generated by a basis B, a set of linearly independent vectors
b1,...,bm in Rn, is denoted by: L(B) = {x ∈ Rn : x =

∑m
i=1 uibi, u ∈ Zm}, where m is the rank and n is the

dimension of the lattice.

Lattice-based cryptosystems become vulnerable when cer-
tain mathematical problems (in this case lattice problems) are
solved. To estimate the actual computational complexity of
these problems in practice is of prime importance, because
the parameters of cryptosystems are chosen based on this
complexity. Overestimating the computational complexity of
these problems forces one to use overly strong parameters,
which might render the scheme impractical. On the other hand,
underestimating their computational complexity might lead to
vulnerable cryptosystems. This is the core reason why highly
optimized, parallel solvers of the underlying lattice problems
of lattice-based cryptosystems deserve study.

The central problem in this context is the Shortest Vector
Problem (SVP), which consists in finding the non-zero vector v
of a given lattice L, whose Euclidean norm ‖v‖ is the smallest
among the norms of all non-zero vectors in the lattice L and
is denoted by λ1(L). It is well known that the SVP is NP-
hard, so no polynomial time exact algorithms are expected
to be be found. We refer to an algorithm that solves this
problem as an SVP-solver. Although there are several types
of SVP-solvers, enumeration and sieving are the most relevant
classes of these solvers in practice. In particular, a combination
of enumeration-based algorithms with extreme pruning and
efficient lattice reduction algorithms seems to be the de facto
approach to solve the SVP in high dimensions.

In fact, enumeration algorithms have been studied for
several decades, with good results, which somewhat stunt the
headway made on sieving algorithms. GaussSieve has been
the most practical sieving algorithm, and many implementa-
tions, both on shared- and distributed-memory, were published
(e.g. [3], [4]). However, even the best implementations of
GaussSieve are not competitive with highly pruned enumer-
ation on random lattices.

Very recently, there was a small turnaround in this matter,
with the proposal of HashSieve [7]. HashSieve is an algo-
rithm that simplifies the reduction process of GaussSieve,
thus becoming considerably faster. A parallel implementa-
tion attaining good scalability on 16-core shared-memory
systems was proposed shortly after, proving that sieving
might be way more practical than previously believed [2].
Although there are records of sieving implementations used to
break high dimensional lattices on the online SVP-challenge

www.latticechallenge.org/svp-challenge/, this is, to our knowl-
edge, the best implementation of sieving algorithms today.

Although enumeration and sieving algorithms have been
considerably studied (although at different scales), little was
done to understand their performance on modern computer ar-
chitectures. In this paper, we present a computational analysis
of HashSieve and we show how to improve the scalability
and memory usage of HashSieve, with optimizations that can
be extended to other sieving algorithms. To this end, we
employ scalable random sampling mechanisms, object memory
pools, scalable memory allocators and aggressive memory
prefetching. As a result, we attained a considerable overall
speedup in comparison to the implementation proposed in [2]
and we set new records for the HashSieve algorithm.

Contributions. This paper shows, for the first time, an
analysis of an SVP-solver, HashSieve, from a computational
perspective, presenting its arithmetic intensity and memory ac-
cess pattern. By applying techniques known to HPC, we show
that the performance of HashSieve can be four times higher
than previously reported, which unveils the full potential of the
algorithm. These findings are meaningful because this imputes
a greater value to sieving algorithms while attacks to lattice-
based cryptosystems, thus forcing to use their complexity while
selecting parameters for lattice-based cryptosystems.

Structure. The rest of this paper is organized as follows.
Section II presents the HashSieve algorithm. Section III intro-
duces the test platforms. Section IV briefly recaps the imple-
mentation presented in [2]. The following sections present our
enhancements to HashSieve. In particular, Sections V, VI and
VII present the improvement on the scalability, memory usage
and tractability over the baseline implementation. Section VIII
concludes the paper and presents future lines of research.

II. HASHSIEVE

The core idea behind sieving algorithms is the reduction of
vectors against one another [5]. Reducing one vector v against
(a multiple of) another vector w means that w is either sub-
tracted or added to v, so that v becomes shorter. The number
of vectors necessary for convergence is not known upfront for
the majority of sieving algorithms. The reduction of vectors
is usually done in a brute-force manner: each vector is tested
against all the other vectors, by means of an inner product, to
determine whether the reduction is successful. In general, the
closer these vectors are in Euclidean space (which is given by
the inner product), the higher the probability for reduction.

HashSieve simplifies this process by filtering out a large
number of these vectors. This is done with a popular method
from nearest neighbor search, known as locality-sensitive hash-
ing. This method organizes vectors in hash tables according to
the distance spanned between them. For example, the vectors
that are close in space to a vector v are stored in the same hash
bucket of v, for every hash table. As each bucket is essentially
some part of the lattice, the algorithm uses many hash tables to
capture vectors that lie in the borders of those spaces. With this
setup, the algorithm samples many vectors, as in every sieving
algorithm, reducing them against the vectors with the same
hash value, for every hash table. For a thorough description of
HashSieve, we refer the reader to [7].

Algorithm 1: The HashSieve algorithm
Input: (Reduced) basis B, collision threshold c;1
Initialize stack S ← {}, collisions cl← 02
Initialize T empty hash tables H1, . . . ,HT3

while cl < c do4
Pop vector v from S or sample it if |S| = 05
while ∃w ∈ H1[h1(v)], ...,HT [hT (v)] : ||v±w|| < ||v|| do6

for each Hash table Hi, ...,HT do7
Obtain the set of candidates C = Hi[hi(v)]8
for each w ∈ C do9

Reduce v against w and Reduce w against v10
if w has changed then11

Remove w from all T hash tables Hi12
if w == 0 then cl++13
else Add w to the stack S14

if v == 0 then cl++15
else Add v to all T hash tables Hi16

The pseudo-code of the HashSieve algorithm is given in
Algorithm 1. After the initialization, the algorithm repeats the
following four-step process: (i) sample a random lattice vector
v (or get one from the stack S); (ii) find nearby candidate
vectors w in the hash tables to reduce v with; (iii) use vector
v to reduce other vectors w in the hash tables (and for each
reduced w, move it onto the stack); and (iv) add v to the stack
or hash tables. This process aims to build a large set of short,
pairwise reduced vectors until two of them are λ1(L) apart.
After that, the size of the set does not increase anymore, and
collisions, which happen when vectors are reduced to the zero-
vector, are generated instead. The algorithm terminates when
a given number of collisions is reached.

The crucial difference between HashSieve and other sieving
algorithms is how steps (ii) and (iii) are executed. Instead of
traversing a list of vectors in linear time, the algorithm uses T
independent hash tables H1, . . . ,HT to look for nearby vectors.
Given a target vector v, the algorithm performs these hash
table look-ups by first computing the hash value hi(v) (where
hi is a locality-sensitive hash function, efficiently evaluated
in O(n2)), and then accessing the vectors in the hash table
Hi that have the same hash value as v, i.e. all w : hi(w) =
hi(v), for all the hash tables Hi...HT. These locality-sensitive
hash functions enjoy a particular property: vectors mapped to
the same hash bucket are more likely to be nearby than other
vectors. This empowers HashSieve to intelligently filter vectors
that are likely to be successfully used to reduced samples.

Increasing K and T renders the hash functions more selec-
tive. However, that comes at the cost of increasing the space
usage because the algorithm holds more hash tables, with more
buckets (each hash table has 2K buckets), and every vector
needs to be stored in every hash table. The computational load
is also increased, because one needs to compute the T hash
values of each target vector v and perform T hash table look-
ups. Thus, at some point, increasing the number of hash tables
T does not improve the execution time any longer. In [7], it was
shown that the choices K = b0.2209ne and T = b20.1290ne are
sound. We will refer to these as optimal parameters, although
they are not necessarily optimal in practice.

16-core machine 60-core machine
#Sockets 2 4
CPU manufacturer Intel Intel
Model number E5-2670 E7-4890 v2
Launch date Q1’12 Q1’14
Micro-architecture Sandy Bridge Ivy Bridge
Frequency 2600 MHz 2800 MHz
Cores per chip 8 15
SMT Hyper-threading Turned off
L1 Cache 32 kB iC+dC 32 kB iC+dC
L2 Cache 256 kB 256 kB
L3 Cache 20 MB shared 37.5 MB shared
System memory 128 GBs 1 TB

TABLE I: Specifications of the test platforms.

III. TEST PLATFORMS

Our analyses were carried out with several random lattices,
generated with Goldstein-Mayer bases, in multiple dimensions,
available on the SVP-challenge1 website. All lattices were
generated with seed 0. Table I provides the specifications of
the two test platforms, with 16 and 60 cores, respectively
(SMT stands for Simultaneous multi-threading and iC/dC for
instruction/data cache). The 16-core machine runs Ubuntu
11.10, whereas the 60-core machine runs SUSE Linux ES.

The code was compiled with Intel’s icpc 13.1.3 on the
16-core machine and icpc 15.0.2 on the 60-core machine,
with the -O2 optimization flag, since it was slightly better than
-O3. The elapsed time of lattice reduction is not included in
the results. The norm of the output vector of each and every
run (sequential and parallel) was always the same.

The experiments were conducted with lattices in dimension
70 (seed 0) and onwards, since for reasonably strong basis
reductions (aka reasonably high BKZ-β), a large part of the
workload entailed by lower dimensions fits in the L3 cache
of both machines, rendering the quantification of our memory
optimizations less meaningful. We used the optimal HashSieve
parameters for every experiment, except when said otherwise
(e.g. Section VII). We reduced the lattice bases with BKZ
from NTL2. The optimizations we report in this paper build
upon the most efficient implementation of HashSieve to date,
the implementation proposed in [2], which we refer to as the
baseline implementation from here on. For the tests involving
hardware counters, we used PAPI3.

IV. PARALLEL HASHSIEVE IMPLEMENTATION

In this section, we briefly review the baseline implementa-
tion published in [2], written in C. Essentially, the application
spawns a team of threads, each of which samples a vector v,
and tries to reduce v against w and vice versa, where w is one
of the candidate vectors of v. The set of candidate vectors of a
given vector v comprises the vectors that have the same hash
value (i.e. are stored in the same hash bucket) of v, for each and
every hash table in the system. If v is reduced against any of the
candidate vectors, the thread repeats the whole process again
(i.e. goes through all the hash tables, looking for candidates
to reduce v against, most likely on different buckets). If w is

1www.latticechallenge.org/svp-challenge/
2www.shoup.net/ntl/
3http://icl.cs.utk.edu/papi/

reduced, it is removed from all the hash tables and moved onto
the stack (which is private per thread).

Whenever a sample has gone through all the hash tables
without being reduced, the thread inserts v in every hash table
and samples another vector. The implementation employs a
light-weight probable lock-free mechanism to handle concur-
rent accesses to the tables: whenever a thread accesses a hash
bucket, it atomically sets a variable to 1, turning it to 0 when
the visited bucket is no longer needed. The same system is used
for regular vectors in the system, because as every hash table
has one pointer to every vector in the system, the same vector
might be accessed (and modified) from different hash buckets,
by different threads (cf. Figure 1 in [2]). If a thread encounters
one vector under use, the vector is simply disregarded, and the
thread proceeds to the next iteration.

Arithmetic intensity. The kernels of the algorithm come
down to (1) the dot product 〈v,w〉, (2) the addition of one
vector to another and (3) the calculation of the hash value of
each vector (cf. [7]). The number of operations and accessed
bytes in these kernels is summarized in Table II, where the
arithmetic intensity (number of operations per byte fetched
from memory) is calculated for a lattice in dimension 80. Note
that in this process we ignored the arithmetic intensity of the
loops. Also, we assume that there is only one deference of the
array of coordinates as this is usually optimized by compilers,
which create a const auxiliary pointer that points to the array.

Setting aside the other procedures in the algorithm, and
assuming n = 80, the maximum arithmetic intensity of the
analysed kernels is ≈ 1/6, which is rather low. Furthermore,
the arithmetic intensity decreases with the lattice dimension.
The actual arithmetic intensity is way below this mark: these
kernels aside, the algorithm essentially fetches high volumes
of data from memory, so that these kernels can be executed. In
particular, the algorithm (1) loads hash buckets, (2) adds and
(3) removes vectors to/from hash buckets. These procedures
are difficult to bound in terms of memory loads and stores,
but they will only contribute to lower the overall arithmetic
intensity. More than that, they contribute to very high cache
miss ratios, which we report in the next subsection.

Calculating the ultimate contribution of (1), (2) and (3)
to the overall arithmetic intensity is very hard, because the
number of times they are executed varies considerably from
lattice to lattice (even for the same dimension). Although we
could use hardware counters to capture the memory traffic the
algorithm ultimately incurs, there is no way to capture integer
computations, since they are clouded by control-flow opera-
tions. Nonetheless, the point of this section is to prove that the
algorithm is memory bound and that most of the optimization
opportunity lies on the memory side, to which we dedicate
Section VI. Additional evidence that the implementation is

Kernel Dot product Add Hash Val

Operations 2n n + 3 3n/2 + 4

Load/stored bytes 12n + 16 6n + 36 10n + 8

Arithmetic intensity ≈ 1/6 ≈ 1/6 ≈ 1/7

TABLE II: CPU operations and bytes fetched from memory
for the three kernels of HashSieve, for n=80.

0

20

40

60

80

100

70 72 74 76 78 80

M
is

s
ra

te
 (

%
)

Lattice dimension

L2
L3

Fig. 1: L2/L3 miss ratios for the HashSieve implementation in
[2], running with 32 threads on the 16-core machine. β = 34.

memory bound is the increase of performance when using
SMT (cf. Figure 2), which does only benefit the performance
of memory-bound applications.

Memory access irregularity. Irregular memory access pat-
terns are well known for impairing performance. The memory
access pattern of HashSieve is substantially irregular. To verify
this claim, we measured the number of L2 and L3 cache misses
in the baseline HashSieve implementation, for dimensions
70-80 in steps of 2, since irregular applications have very
high miss ratios. These are shown in Figure 1. For smaller
dimensions, BKZ finds the solution and HashSieve does not
run for enough time to render this analysis useful.

The high cache misses ratios are due to the different hash
tables that are consecutively visited, in order to reduce samples.
There are 2K × T buckets that one thread can access, and the
number of vectors looked at, per bucket, can be as low as one.
Therefore, the likelihood of accessing the same hash bucket in
a short time-frame is rather small. The miss ratios grow with
the dimension because the higher the dimension, the larger the
number of buckets per hash table 2K and/or the number of hash
tables T, which increases the likelihood of a cache miss. For a
sufficiently high dimension (88 and onwards), we expect that
both the L2 and L3 cache miss ratios are close to 100%.

In this section, we show that HashSieve is memory-bound,
and one should optimize memory usage to improve perfor-
mance. Section VI shows a few techniques to achieve that end.

V. IMPROVING SCALABILITY

Klein’s algorithm (cf. [6]) is used to sample vectors in
sieving algorithms. The first works on parallel sieving algo-
rithms reported substantially faster convergence when increas-
ing parameter d in Klein’s algorithm up to some point. This is
because Klein’s algorithm samples shorter vectors on such a
setup, which accelerates the convergence of sieving algorithms.
However, it has also been reported that the scalability of some
of these (shared-memory) implementations became hampered
when increasing d. In particular, the optimal value of d
when running these implementations in sequential (expectedly
optimal in the parallel versions), rendered the implementations
less scalable, and therefore less efficient [4], [2]. The degree to
which increased values of d undermined scalability was higher
for the implementation of HashSieve reported in [2] than for
the implementation of GaussSieve reported in [4].

The fundamental cause of this behavior is the simultaneous
use of the rand() function (drand48(), in these cases) by several
threads. When one of these functions is used simultaneously by
several threads, the actual behavior is undefined and depends
on the actual implementation of these functions. One of the
possibilities is the slow down of the code, since threads
synchronize with one another to keep track of each others state.
This was the behavior of the program reported on both papers.
The connection with an increased parameter d in Klein’s
algorithm is straightforward: higher values of d render the
sampler computationally heavier, as more iterations have to
be performed for certain criteria to be verified. This results in
more calls to drand48(), which aggravates the problem. This is
more noticeable in HashSieve because the reduction process is
faster, and so the likelihood for two threads to call the sampler
(and thus the drand48() function) at the same time is higher.

To solve this problem, one can use random functions with
private states (e.g. drand48 r()). This way, each thread has a
private state of the randomization sequence and no synchro-
nization with the other threads is necessary. We modified the
implementation presented in [2] to account for this. The appli-
cation creates one private state for each thread. The states are
not aggregated into an array to avoid cache thrashing. It should
be noted that using more than one random number generator,
with different seeds, in parallel, does not necessarily mean
that the generated numbers follow the original distribution
(or even lead to random numbers in general). However, for
this particular application, it suffices that the samplers output
different vectors, which in fact happened otherwise too many
collisions would be generated before the solution was gotten.

Figure 2(a) shows the scalability of the HashSieve imple-
mentation described in [2] with Klein’s parameter d equals to
20 and 70. The performance of HashSieve with d = 70 is
better for a single thread, but as the scalability of HashSieve
is low when d = 70, almost flat-lining for more than 4 threads,
a lower value for d delivers better results. With d = 20,
the application scales linearly, and outperforms d = 70 for
8 or more HashSieve. Figure 2(b) shows the scalability of the
implementation with a private random state per thread, for both
d equals to 20 and 70. The performance of the implementation
with d = 20 is identical to the original version, but the
scalability for d = 70 became linear as well, outperforming
d = 20 for any number of threads. The performance for one
thread is different because different seeds for drand48() are
used, which does not interfere with the scalability.

We also conducted experiments to verify the scalability
of the improved implementation of HashSieve (with private
states per thread) for higher core counts. Figure 2(c) shows its
scalability on the 60-core machine. An analysis of how and
why the performance of our implementation varies on both
machines is out of the scope of this paper. These experiments
aim to prove the high scalability of the improved implementa-
tion on higher core counts. The implementation scales linearly
up to 60 threads (watch over the interruption in the x axis),
if each thread is fed with a private status for the drand48 r()
function, despite of what Klein’s parameter d is used. With
this implementation, we are able to run a lattice in dimension
80 (taken from the SVP-challenge, generated with seed 0) in
371 seconds with the 16-core machine (includes SMT) and in
189 seconds with the 60-core machine (without SMT).

400

800

2500

7000

16000

1 2 4 8 16 32

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of threads

d = 20
d = 70

400

800

2500

7000

16000

1 2 4 8 16 32

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of threads

d = 20
d = 70

100

400

800

2500

7000

16000

1 2 4 8 16 32 60

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of threads

d = 20
d = 70

Fig. 2: Scalability of the implementation in [2] for Klein’s parameter d equals to 20 and 70, for (a) original version on the
16-core machine, (b) private states per thread on the 16-core machine and (c) private states per thread on the 60-core machine.

This optimization represents already a speedup of ≈2.3x
over the baseline implementation. From here on, every reported
experiment will be built into this optimized version. In the
next section, we show a series of optimizations, each of which
builds onto the previous one, with incremental speedups.

VI. OPTIMIZATION OF MEMORY USAGE

As mentioned before, memory usage is a critical aspect of
HashSieve. In this context, there are three different aspects that
can be identified. First, the number and size of the hash tables
in the algorithm grows exponentially and linearly, respectively,
with the lattice dimension. Although this leads to very high
memory consumptions (e.g. dimension 100 would require 2.6
TB if the optimal parameters were to be used), this is an
inherent characteristic of the algorithm and little can be done
to mitigate this. However, there are two other aspects that one
can identify and improve in the baseline implementation.

The first aspect is a particularly demanding memory allo-
cation pattern. The baseline implementation allocates memory
every time a new vector is to be sampled and whenever a
bucket pool needs to be extended. Thus, a considerable part of
HashSieve’s runtime is spent on requesting these allocations to
the operating system, which is typically a concurrent method
if the default memory allocator malloc is used. The second
aspect is that HashSieve is a memory bound algorithm, as we
showed in Section IV, and most of its execution time is actually
spent on fetching data from the memory hierarchy rather than
processing it. In this section we show how one can tackle these
problems and optimize HashSieve in practice.

A. Object Pools

The baseline implementation implements hash buckets with
pools (of pointers to vectors), an attempt to mitigate the cost
of adding vectors to the hash tables. These pools are re-sized
whenever needed, with realloc. For samples, no pools are used:
when vectors are sampled, they are stored with a malloc call.
This is inefficient for a few reasons. First, this might lead to
memory fragmentation because there is no assurance that these
vectors will be stored contiguously in memory. Second, this
incurs additional overhead because each of these malloc calls
is an operating system call and they are invoked in parallel by
several threads, which requires a locking mechanism to control
concurrency. Third, this has reduced locality of reference.

We improved this with another pool of vectors, private
per thread, this time used to store sample vectors. Essentially,
we allocate a big array of vectors, in the beginning of the
application, along with its size and its latest used position:

Vector *pool = malloc(POOL_SIZE*sizeof(Vector));

int pool_size = POOL_SIZE, latest_pos = 0;

Whenever a vector of the pool is used, the pool_size
variable is decremented and the latest_pos variable is
incremented. When a vector is used, the size of the pool is
checked, and the pool is resized when it is empty.

The goodness of such a vector pool is two-fold. First, it
minimizes the number of malloc calls. Second, it improves spa-
cial locality, since vectors are consecutively stored in memory.

Table III shows the execution time of the baseline imple-
mentation, with and without a pool of samples. The achieved
speedup is as much as 10.9%. It is impractical to extend these
experiments to higher dimensions. The speedup grows with the
lattice dimension, except for dimension 86. It is hard to specu-
late if the speedup will continue to grow for higher dimensions,
because the benefit depends both on the number and the timing
of each malloc call, which varies between executions. The
gains are thus larger for more overlaps between these calls.

We also implemented an actual memory pool, i.e. a
mechanism that allocates a very large space in memory and
distributes chunks on that space upon request. The advantage
of a memory pool is that only a single malloc call is done and
retrieving chunks entails nothing but incrementing pointers.
However, we did not implement a realloc function in our
memory pool, which becomes a whole task on its own. Due to
this reason, our performance gains were marginal, since when
a realloc is to be made (to extend an hash bucket), each thread
asks the pool for more memory and copies the elements from

Dimension 80 82 84 86

Without pool 371 777 1471 2738
With pool 355 730 1326 2530

Speedup 4,5% 6,4% 10,9% 8,2%

TABLE III: Execution time with and without pools of vectors
for samples, on the 16-core machine (32 threads). BKZ-β=34.

Dimension 80 82 84 86

With pool 355 730 1326 2530
With pool + tcmalloc 348 699 1261 2528

Speedup 2,0% 4,4% 5,2% <1%

TABLE IV: Execution time with and without tcmalloc, on
the 16-core machine (running with 32 threads). BKZ-β=34.

the previous memory space to the freshly allocated memory
space, thus incurring a substantial overhead.

B. Generic memory allocators

An alternative to memory pools are generic memory allo-
cators. Although these mechanisms are considerably different
in terms of aim and design, both usually accelerate mem-
ory allocation. Generic memory allocators are usually more
scalable and more efficient than the default malloc system
call, especially on multi-threaded applications. Hoard4, and
tcmalloc5 are among the most popular generic memory
allocators. Some, as tcmalloc, are drop-in replacements of
malloc and other system calls, while others provide an API.

Our HashSieve implementation allocates memory in paral-
lel in three different stages: (i) during the initialization, where
all the hash tables and buckets are allocated, (ii) to create the
various object pools (as discussed in subsection VI-A), private
to each thread, and (iii) to extend the memory reserved to every
bucket (with realloc). The latest is the most problematic among
them, because even for dimension 80, millions of reallocs are
in fact called. The number of reallocs is much bigger than the
number of used vectors, which means that one vector is moved
around in many hash tables throughout the application.

We chose tcmalloc for our experiments, due to two
reasons. First, tcmalloc is a drop-in replacement to memory
system calls, thus not requiring much effort to be integrated
into the code. Second, it was the only allocator available
on both benchmarking machines. As shown in Table IV, the
use of tcmalloc is beneficial and increases with the lattice
dimension. As also happened with the object pool, tcmalloc
is less effective for dimension 86. We believe that this is a
coincidence. We also ruled out the possibility of a correlation
with the number of used (and allocated) vectors, since it spikes
precisely from dimension 84 to dimension 86 (grows 57%), if
compared to the growth from dimension 82 to dimension 84
(only 23%). If any correlation held, tcmalloc would deliver
the most noticeable performance boost on dimension 84.

The actual speedup boost depends not only on the number
of allocations that are performed, but also on the number
of overlapping mallocs that are avoided, which varies from
execution to execution. It should be noted that the algorithm
performs differently for different lattices, even in the same
dimension. To have reliable statistical data, we would have to
run multiple lattices in the same dimension. This, however, is
out of the scope of this paper, since the main purpose of these
experiments is to identify if it is worthwhile to invest time
in writing a custom memory allocator for this algorithm (and

4http://www.hoard.org/
5http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Dimension 80 82 84 86

With pool + tcmalloc 348 699 1261 2528
With pool + tcmalloc

+ prefetching 312 644 1176 2330

Speedup 11,5% 8,5% 7,2% 8,5%

TABLE V: Execution time with and without data prefetching,
on the 16-core machine (running with 32 threads). BKZ-β=34.

perhaps algorithms with the same computational behavior, as
other sieving algorithms for the SVP).

C. Prefetching

The last of the optimizations we applied was software-
based prefetching, with hand-inserted prefetch directives. Al-
though it is usually claimed that achieving speedups with such
a scheme is rather hard for irregular applications [8], [1], we
did use prefetching successfully in HashSieve.

There are many opportunities on HashSieve to prefetch
data, which are not captured by the compiler because they
depend on runtime values of subsequent iterations. A repre-
sentative example is the removal of one vector from all the
hash tables in the system, which is shown in the code below.

for(int t = 0; t < T; t++){
hash_value = hash_function(w, t);

bkt_remove(&HashTables[t][hash_value], w);

}

As the compiler does not know the subsequent value of
hash value, it cannot prefetch the data where HashTables
of iteration t+1 resides at. As programmers, we can not only
make it more explicit to the compiler, as we can also prefetch
the data. This is achieved by replacing the previous loop with:

int hash_values[T];

for(int t = 0; t < T; t++){
hash_values[t] = hash_function(w, t);

}
for(int t = 0; t < T-1; t++){

//Prefetch HashTables[t+1][hash_values[t+1]!

bkt_remove(&HashTables[t][hash_values[t]], w);

}
bkt_remove(&HashTables[t][hash_values[T]], w);

This calculates all the indexes upfront and prefetches the
data needed in iteration i+1 in iteration i. As such, when
iteration i+1 is executed, the data will already be in cache (or
the latency will be small, since data is requested before). This
can be (and is) replicated throughout the code, for insertion
and removal of vectors from hash buckets, and other minor
operations. The speedup is summarized in Table V.

D. Brief wrap up and discussion

In the previous subsections, we showed how the perfor-
mance of HashSieve can be enhanced in practice with a
number of memory optimizations. In particular, we conclude
that: (1) the allocation of object pools improved the code as

Dimension 90 92 94 96 98 100 ... 107

Probing? No Yes (1-level) ... Yes (1-level)
BKZ-β 34 40 ... 36

Klein’s d 70 ... 70
Sample Pool (k) 100 100 100 150 150 250 ... 850

K 20 20 21 21 22 22 ... 23
T 3126 3738 4470 465 533 637 ... 1046

Optimal K/T? Yes No ... No
Target norm? No ... No

Used vectors (k) ≈2425 ≈2998 ≈4501 ≈5565 ≈7050 ≈10054 ... ≈26658
Solution 2419 2440 2526 2522 2541 2571 ... 2626
Time (h) 0.86 1.72 3.74 6.52 10.03 18.19 ... 119.31

Memory (GB) ≈310 ≈380 ≈872 ≈95 ≈113 ≈256 ... ≈912

TABLE VI: Experiments with the optimized implementation of HashSieve on the 60-core machine, with 60 threads, for lattices
in dimensions [90,107]. Statistics pertaining to the number of vectors for convergence, execution time of the application and the
memory ultimately spent, as functions of the used sample pool (in thousands of vectors) and T and K parameters.

0

20

40

60

80

100

70 72 74 76 78 80

M
is

s
ra

te
 (

%
)

Lattice dimension

L2
L3

Fig. 3: L2/L3 miss ratios for the improved HashSieve imple-
mentation, on the 16-core machine (32 threads). BKZ-β = 34.

much as ≈11%, (2) tcmalloc, a generic memory allocator,
provides even further speedup for the majority of the lattice
dimensions we tested and (3) intensive prefetching does also
boost performance, by pre-calculating the indexes of the fol-
lowing elements to be accessed and fetching them beforehand.
With these optimizations, we are now able to run a lattice in
dimension 80 in 151 and 312 seconds, respectively for the 16-
and 60-core machines. As Figure 3 show, the both L2 and L3
miss ratios decreased with our optimizations.

The experiments conducted did not aim to select the best
mechanisms for the optimizations we investigated (e.g. find
the best generic memory allocator for our implementation), but
rather identify generic lines of improvement in the algorithm
(and its class). Also, we did not quantify memory consumption
savings with the optimizations we implemented, since it would
require a much more extensive set of benchmarks and analysis.

VII. IMPROVING TRACTABILITY

In this section, we report benchmarks carried out on the
60-core machine, for lattices in higher dimensions (90-107).
We used the most efficient HashSieve implementation, i.e., the
version which includes the optimizations of Sections V and VI,
running with 60 threads. The aim of this section is to redefine
the tractability of HashSieve in high dimensions, in light of
our optimizations. Therefore, we do not quantify the gains of
the previously reported optimizations for these experiments.

For these benchmarks, we implemented one level probing,
which mitigates the high levels of memory usage in HashSieve.
For a complete explanation of probing, we refer the reader
to the original paper of HashSieve [7]. Put simply, probing
consists in visiting more buckets for each hash table, at the
same time the number of hash tables is reduced. As a result,
the computation in the algorithm increases, but memory usage
decreases (and by a larger factor). In particular, the number of
hash tables is reduced by a factor of K/2+ 1. The key idea is
that, if one cannot use the optimal parameters K and T due to
a physical RAM limitation, probing can be used to reduce the
number of used Hash tables, thus allowing one to use higher
values for K and T. In theory, the execution time increase due
to the use of fewer Hash tables is outweighed by the use of
higher values for K and T. In practice, this has never been
validated to this day, a task we accomplished in this paper.

Table VI shows the performance of our implementation on
the 60-core machine, for dimensions 90-107. We used different
parameters for BKZ-β, the initial size of the sample pool
described in Section VI-A, and Klein’s parameter d was set
to 70. The choice of BKZ-β was guided by intuition, since
it would be impractical to find its best values. As for K, T,
we used the optimal parameters until dimension 94, since the
application spent less than 1 TB of RAM and no probing
had to be used. For higher dimensions, we resorted to one-
level probing. Dimension 96 is actually a good example to
illustrate the efficacy of probing: the optimal parameters K=21,
T=5345 would require a little bit over 1 TB of RAM, which is
not possible in the used machine. Therefore, without probing,
suboptimal parameters would have to be used. With K=20
and T=4087, the implementation took 7.10 hours, requiring
≈474GBs of RAM. With probing, we were able to use higher
parameters, which rendered the implementation faster (6.52h),
but more importantly, spending 5 times less memory.

The table shows the final number of used vectors (in
thousands), execution time of the application (in hours) and
the ultimately required memory (in GBs). One relevant caveat
on these experiments is that one cannot infer functions for the
growth of the execution time, number of used vectors and used
memory, by simply taking all the benchmarks into account, as
no probing and optimal parameters K and T were used for
dimensions 90-94, but not for larger dimensions.

Dimension 90 92 94 96

Baseline imp. [2] 3.43 7.35 11.07 17.38
Optimized imp. 0.86 1.72 3.74 6.52

Speedup 3.99x 4.27x 2.96x 2.67x

TABLE VII: Execution time of the baseline and optimized
HashSieve implementations, in hours, on the 60-core machine.

Although we do not report the running time of BKZ, a few
caveats should be noted. In our experiments, we used the BKZ
implementation from NTL, which is not parallel. While the
lattice in dimension 96 was reduced in 20 minutes, dimensions
98 and 100, with β = 40, took approximately 12 hours (it is
known that the running time of BKZ increases exponentially
with β). However, from dimension 102 on, the library requires
the use of BKZ XD instead of BKZ FP, which considerably
increases the running time for BKZ. For instance, reducing
dimensions 107 with β = 36 took around 2 days. For β = 40,
which we believe to deliver a considerably better output, the
process returned a segmentation fault after 6 days.

The current, optimized implementation is considerably
faster than that published in [2]. In particular, for the same
benchmark setup (machine, running threads, compiler, etc), we
obtained a speedup of about 4x for dimension 90, and about
3x for dimensions 94 and 96, the highest dimension solved in
[2]. A big contributor to these speedups is the improvement
of the scalability of the implementation, shown in Section
V. Table VII summarizes the final execution times of both
implementations and provides the final speedup.

VIII. CONCLUSIONS

Although the cryptography community has acquired a
vast knowledge of algorithms for the SVP, their practical
performance is yet not well understood. This is critical because
wrong assumptions about practical algorithms might be made
while constructing a cryptosystem. In this paper, we took a
step forward to fill this gap, by analyzing and optimizing
HashSieve, the best sieving algorithm for the SVP in practice.

Results. We showed that HashSieve is a memory-bound
algorithm, for which end we computed its arithmetic intensity
and provided data pertaining to its memory pattern behavior. In
particular, we conclude that its arithmetic intensity is bounded
to 1/6 (although certainly way below that mark in practice),
and the L2 and L3 cache miss ratios are very high (>95%
for L2 and >60% for L3, in dimension 80) and increase
with the lattice dimension. We speculate that both ratios are
close to 100% from dimension 88 onwards. Due to these
figures, we conclude that the biggest optimization opportunity
on HashSieve lies on the memory side.

Therefore, we conducted a series of memory optimizations
on the best implementation to date, proposed in [2], at the same
time we enhanced its scalability. The memory optimizations
included object pools, generic memory allocators, and inten-
sive prefetching. Implementing private states for randomization
rendered the code highly scalable, for any Klein’s parameter d.
Overall, we obtained a speedup of as high as 4x in comparison
to [2], for the same benchmark setup.

Meaning of results. To put these results in perspective,
the highest dimension solvable by our implementation in
less than 24h is now 100, instead of 96. Also, the baseline
implementation would require approximately 147 days to solve
dimension 120 on the 16-core machine, whereas the current
implementation would require less than 50 days. It is important
to note that since SVP-solvers are usually ran for several days
and even months, even 10% gains are significant. For instance,
solving dimension 107, which took about 5 days, would run
in about 15 days without our improvements.

This means that, by applying relatively known HPC tech-
niques to sieving algorithms, we proved them much more
practical than previously believed. Thus, the crossing point
between HashSieve and other SVP-solvers may occur for much
lower lattice dimensions than previously expected. As a result,
depending on the used lattice dimensions, the asymptotic com-
plexity of our HashSieve implementation should be considered,
instead of other, e.g. enumeration-based, algorithms.

Generalization of results. Our optimizations can be gener-
alized to other sieving algorithms. In particular, the application
of an object pool on GaussSieve (e.g. the implementations in
[3], [4]) is straightforward and should deliver similar speedups.
All our optimizations would be useful for the implementation
described in [4]. For instance, we could prefetch consecutive
elements in the list (which are not consecutively stored in
memory, and are therefore not brought to cache in the same
memory transfer) and use a scalable memory allocator. It is
still relevant to consider improvements to GaussSieve because
it can leverage special lattice structures, such as ideal lattices,
whereas it is unclear if HashSieve can be adapted in a
similar way. Finally, as HashSieve is expected to be improved
via different hash functions, our improvements are important
since we could simply integrate a better hash function in our
implementation and benefit from all optimizations altogether.

Future work. We plan to implement a parallel version
of BKZ 2.0 to speed up lattice reduction, which became a
bottleneck for further experiments (e.g. we could not reduce
the basis of the 107-dimensional lattice with an adequate β).

Acknowledgments. This work has been co-funded by the
DFG as part of project P1 within the CRC 1119 CROSSING.

REFERENCES

[1] John Mellor crummey et al. Improving memory hierarchy performance
for irregular applications using data and computation reorderings. In
International Journal of Parallel Programming, pages 425–433, 2001.

[2] Artur Mariano et al. Parallel (probable) lock-free HashSieve: a practical
sieving algorithm for the SVP. In 44th International Conference on
Parallel Processing, Beijing, China, September 1-4, 2015.

[3] Joppe Bos et al. Sieving for shortest vectors in ideal lattices: a practical
perspective. Cryptology ePrint Archive, Report 2014/880, 2014.

[4] Mariano et al. Lock-free GaussSieve for linear speedups in parallel high
performance SVP calculation. SBAC-PAD’14, 2014.

[5] Miklós Ajtai et al. A sieve algorithm for the shortest lattice vector
problem. In STOC, pages 601–610, 2001.

[6] Philip Klein. Finding the closest lattice vector when it’s unusually close.
In SODA, SODA ’00, pages 937–941, Philadelphia, PA, USA, 2000.

[7] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. CRYPTO 2015, To appear.

[8] Zheng Zhang and Josep Torrellas. Speeding up irregular applications in
shared-memory multiprocessors: Memory binding and group prefetching.
In Proceedings of the 22nd Annual ISCA, pages 188–200, 1995.

