
A comprehensive empirical comparison of
parallel ListSieve and GaussSieve

Artur Mariano1, Özgür Dagdelen2, and Christian Bischof1

1 Institute for Scientific Computing, Technische Universität Darmstadt
2 Cryptography and Computer Algebra, Technische Universität Darmstadt

artur.mariano@sc.tu-darmstadt.de,oezguer.dagdelen@cased.de

christian.bischof@sc.tu-darmstadt.de

Abstract The security of lattice-based cryptosystems is determined by
the performance of practical implementations of, among others, algo-
rithms for the Shortest Vector Problem (SVP).
In this paper, we conduct a comprehensive, empirical comparison of two
SVP-solvers: ListSieve and GaussSieve. We also propose a practical par-
allel implementation of ListSieve, which achieves super-linear speedups
on multi-core CPUs, with efficiency levels as high as 183%. By compar-
ing our implementation with a parallel implementation of GaussSieve, we
show that ListSieve can, in fact, outperform GaussSieve for a large num-
ber of threads, thus answering a question that was still open to this day.

Keywords: sieving, superlinear speedup, shortest vector, parallel

1 Introduction

Cryptography aims mostly at protecting information sent over an insecure chan-
nel. The implementation of cryptosystems is usually a three-phase engineering
process. First, a cryptosystem with a certain underlying mathematical problem
is specified. Second, an implementation of an algorithm that solves the under-
lying mathematical problem is used to identify hard instances of the problem.
Third, these instances are used to define parameters for the implementation of
the cryptosystem. Therefore, practical implementations of these algorithms are
required for the implementation of secure, real-world cryptosystems.

In 1996, Ajtai found out that the mathematical properties of some lattice
problems have interesting properties for cryptography, such as average-case to
worst-case hardness [1]. Since Ajtai’s discoveries, a significant amount of work
has been done in this field, commonly referred to as lattice-based cryptography.

A lattice Λ is a discrete additive subgroup of Rm. The dimension n ≤ m of
a lattice Λ is the maximum number of mutually linearly independent vectors in
Λ. Any such n linearly independent vectors form a basis, which represents the
lattice. We denote a basis in a column matrix B = [b1, . . . ,bn]. The lattice Λ(B)
is defined by the linear integer span of the basis vectors b1, . . . ,bn, namely

Λ(B) =

{
n∑
i=1

aibi : ai ∈ Z

}
.

2 Artur Mariano, Özgür Dagdelen, and Christian Bischof

For n > 2 there are infinitely many possible bases of a lattice.

Lattice-based cryptography is particularly attractive since it is believed to
be resistant against attacks operated with quantum computers, in contrast to
problems from number theory, such as factorization of large composite num-
bers or the computation of discrete logarithms [15]. The security of lattice-based
cryptosystems is based on the hardness of specific lattice problems. One of these
problems is the Shortest Vector Problem (SVP). The SVP can be formally de-
fined as the computation of a vector v ∈ Λ \ {0} where ‖v‖ = minx∈Λ\{0} ‖x‖.
The norm of the shortest vector is denoted by λ1. This problem can be stated
for every norm; in this work, we address the Euclidean norm, the most common
in this context. Algorithms that solve this problem are called SVP-solvers.

The SVP is known to be NP-hard under randomized reductions [2], and
therefore, no polynomial-time algorithms for this problem are expected to be
found. In fact, only algorithms that find an approximation to the solution of the
SVP, such as the LLL [9] and the Block Korkine Zolotarev (BKZ) [14], are known
to run in feasible time for high lattice dimensions. However, the returned vector,
while somewhat short, might not be short enough to break a cryptosystem. In
fact, LLL and BKZ are lattice basis reduction algorithms, i.e., given a lattice
basis, they find another basis with short, nearly orthogonal vectors. BKZ uses
an SVP-solver as a sub-routine, which finds the shortest vector of small lattice
dimensions, called blocksize [14].

There are two main families of SVP-solvers: enumeration and sieving algo-
rithms. Currently, the fastest SVP-solver is enumeration with extreme prun-
ing [6], which consists in a depth-first traversal of a pruned tree. While enumer-
ation algorithms were extensively studied and implemented in several computer
architectures [5,4,8], sieving algorithms attracted lesser attention in this regard.

Published in 2010 [11], ListSieve and GaussSieve are currently the most rele-
vant sieving algorithms. While ListSieve was considered impractical and impor-
tant mainly for theoretical purposes, GaussSieve was presented as a practical,
efficient heuristic of ListSieve. Some work has been done on sieving algorithms
since [10,3], but there are still some open questions. For instance, although List-
Sieve is considered impractical, there are neither assessments of ListSieve in prac-
tice nor empirical comparisons of both algorithms. Moreover, only one study [13]
(cf. Section 2) focused on the practical behaviour of the original GaussSieve al-
gorithm.

The parallelization of GaussSieve was investigated on multi-core CPUs. Very
recently, it was shown that GaussSieve can scale linearly, using scalable lock-
free lists [10]. However, the first steps in the parallelization of GaussSieve date
back to 2010, when Milde et al. implemented GaussSieve in parallel, with a
ring structure of several instances of GaussSieve [12]. As the scalability of the
implementation was limited, Milde et al. suggested that ListSieve could possibly
outperform GaussSieve for a large number of threads, a question that remains
open to this day and we answer in this paper.

The contribution of this paper is twofold. First, we present the first empirical
analysis of the workflow of ListSieve and of how it compares to GaussSieve. Sec-

Empirical comparison of parallel ListSieve and GaussSieve 3

ond, we propose the first parallel implementation of ListSieve, which relaxes its
properties, thus lowering the workload in comparison to the original algorithm.
As a direct result, it achieves super-linear speedups on multi-core CPUs, up to 32
threads, and it outperforms the parallel GaussSieve implementation presented
in [12] for a big number of threads, while returning the same vector.

Notation. Vectors and matrices are written in bold face, vectors are written
in lower-case, and matrices in upper-case, as in vector v and matrix M. The ith

coordinate of a vector v is denoted by vi. 〈v,p〉 denotes the inner product of
two vectors v and p. The Euclidean norm of v is given by ||v||. v is called a zero
vector if ||v|| = 0.

Roadmap. Section 2 provides some background of sieving algorithms and dis-
cusses a previous study of their properties. Section 3 presents the results of
our experiments with ListSieve and GaussSieve and Section 4 presents the first
parallel implementation of ListSieve. Section 5 concludes the paper.

2 The ListSieve and GaussSieve algorithms

All sieving algorithms follow an identical structure. They build a list L of some-
what random vectors, referred to as samples, typically generated with Klein’s
algorithm [7], remove the zero vectors from L and apply a sieving technique on
it. The sieving process is iteratively executed until a certain stopping criterion,
K ≥ c, where K is the number of collisions, is met. c is usually set in the form
c = α ×mls + β, where mls is the maximum size of L up to that point. When
the sieving process finishes, the shortest vector of the lattice is expected to be in
the list L, with a certain, yet high probability. The generation of vectors and the
sieving process go hand in hand in practical implementations, since the number
of samples that are necessary for the algorithm to converge is not known upfront.

In ListSieve’s original form (see [11]), samples are generated with perturba-
tions, a technique useful to infer the asymptotic complexity of the algorithms.
The pseudo-codes presented in Algorithm 1 and Algorithm 2, on the other hand,
are practical implementations of ListSieve and GaussSieve, wherein randomly
generated vectors are not perturbed.

ListSieve samples vectors with Klein’s algorithm and reduces them as much
as possible against the vectors stored in L, where the freshly reduced vector is
inserted in L once the reduction process is finished. When the sample is reduced
to the zero vector, a collision takes place and the whole iteration is wasted.
Once in L, vectors are never removed or modified. According to the original
description of the algorithms, the reduction process can pick the vectors in L in
any order. However, it is known that keeping L ordered by increasing norm is
more efficient in practice, since the process can be aborted when a vector bigger
than the sample is found.

In contrast to ListSieve, GaussSieve also reduces the elements already in L
against one another. As a result, the elements in L will be pairwise reduced, which

4 Artur Mariano, Özgür Dagdelen, and Christian Bischof

means that the inequality min(||p±v||) ≥ max(||p||,||v||) holds for all v,p ∈ L.
This is precisely the property that governs the Gauss/Lagrange basis reduction
algorithm for two dimensional lattices, hence the name of the algorithm. We
note that the asymptotic time complexity of the algorithm is not known.

Another difference between the algorithms lies in the data structures that
they use. GaussSieve uses a list L that, in contrast to ListSieve, can both grow
and shrink, and a stack S that temporarily keeps vectors that are removed from
L. The use of the stack eases the handling of the vectors that no longer verify the
aforementioned inequality. This happens because when a vector v is generated
and reduced against an element in L, there might be elements in L that are no
longer pairwise reduced with v. Reverting this is not as simple as reducing such
vectors by v, because it might happen that they become no longer Gauss-reduced
with other elements in L thereafter. These elements are therefore brought to stack
S (and reduced against v) and picked in the subsequent iteration, as if they were
freshly generated vectors, thus becoming pairwise-reduced with the whole list L.

Previous studies. The original paper of ListSieve and GaussSieve does not show
tests pertaining to the workflow of the algorithm, since it only aimed at proving
that GaussSieve outperformed another SVP-solver known at that time, NVSieve
[11]. The authors showed (1) the number of samples that GaussSieve requires to
converge, in comparison to NVSieve, which fell into disuse ever since, and (2) the
execution runtime of GaussSieve in comparison to NVSieve and Schnorr-Euchner
enumeration in NTL3, when solving the SVP on lattices in various dimensions.

Since ListSieve and GaussSieve were published, only one study about the
practical behaviour of GaussSieve was presented, by Schneider [13], and no
studies were published on ListSieve. In particular, Schneider investigated the
following parameters of GaussSieve:

- its performance, on various types of lattices, namely ideal, cyclic and random
lattices. GaussSieve’s performance, in terms of runtime, iterations, list size
and collisions, was not affected by the type of the underlying lattice.

3 http://www.shoup.net/ntl/

Algorithm 1: ListSieve

Input: Basis B, stopping criterion c;
Init.: L← {}

while K < c do
p ← SampleKlein(B);
v ← ListReduce(p,L);
if ||v||=0 then

K ← K + 1;
else

L← L ∪ {v};
return BestVector(L);

function ListReduce(p,L)
while ∃vi ∈ L : ||p−vi|| ≤ ||p||
∧ ||p|| ≥ ||vi|| do

p ← p−vi;
return p;
end function

function BestVector(L)
return p : ∀v ∈ L, ||p|| < ||v||;
end function

Empirical comparison of parallel ListSieve and GaussSieve 5

Algorithm 2: GaussSieve

Input: Basis B, stopping criterion c;
Init.: L← {}, S ← {},K ← 0

while K < c do
if S.size()!=0 then

v ← S.pop();
else

v ← SampleKlein(B);
v ← GaussReduce(v,L, S);
if ||v||=0 then

K ← K + 1;
else

L← L ∪ {v};
return BestVector(L)

function GaussReduce(p,L, S)
while ∃vi ∈ L : ||vi|| ≤ ||p||∧||p−vi|| ≤
||p|| do

p ← p−vi;
while ∃vi ∈ L : ||vi|| > ||p||∧||vi−p|| ≤
||vi|| do

L ← L \ {vi};
S.push(vi−p);

return p;
end function

- (1) the number of vectors removed from the list and pushed to the stack
and (2) the reductions, i.e., the number of vectors used to reduce a vector
generated with Klein’s algorithm. Schneider concluded that both are approx-
imately ten times the list size. This means that, on average, ten points are
used to reduce each vector, and the same number reduced and removed from
the list. Considering an exponential list size, this amount is negligible.

- the quality of the best vector in GaussSieve over time. The norm of this
vector decreases only a few times during the execution of the algorithm.

Additionally, Schneider found out that collisions happen only once the short-
est vector of the lattice is found, growing exponentially from then on. When the
norm of the shortest vector is known, it has been shown that the algorithm can
be greatly accelerated. Last but not least, it has been shown that lattice reduc-
tion affects GaussSieve in a positive manner, but to a much lesser degree than
it affects enumeration algorithms.

While these experiments provide important insight about the practical be-
haviour of GaussSieve, they neither show how GaussSieve and ListSieve compare
regarding the selected parameters nor they cover the whole spectrum of param-
eters of interest. The trials reported in this paper cover the following relevant
additional parameters, in ListSieve (LS) or both algorithms (LS-GS):

- (LS-GS) The over-time progression of the best vector (the shortest vector in
L at every instant). This analysis was previously done for GaussSieve only.

- (LS-GS) Comparison of the algorithms in terms of runtime.

- (LS) The maximum number of vectors used in a sample reduction, and the
position of the latest used vector among all iterations.

- (LS) The performance of ListSieve in parallel and its scalability on CPUs.

6 Artur Mariano, Özgür Dagdelen, and Christian Bischof

3 Analysis of ListSieve and GaussSieve

This section presents the results of our study on ListSieve and GaussSieve. For
GaussSieve, we used a publicly available version4, referred to as the gsieve li-
brary, from which we also generated ListSieve, by removing specific operations.
For the sake of fairness, both implementations use dynamic data structures and
have no optimizations but the ones provided by gcc -O2.

Section 3.1 shows the progression of the best vector on two different Goldstein-
Mayer lattices, in dimensions 50 and 60, available from the svp-challenge web-
site5. For determining the function that governs the runtime of the algorithms,
detailed in Section 3.2, we used a broader spectrum of lattices (dimensions 50 to
66, in steps of 2). We investigate further properties of ListSieve and GaussSieve,
on lattices in dimensions 40, 50 and 60, in Section 3.3. The experiments were
conducted on a server equipped with 2 Intel E5-2670 CPU-chips, each with
eight 64-bit instruction set cores equipped with Simultaneous Multi-Threading
(SMT), running at 2.60 GHz, and with 128 GB of RAM. The machine runs
Ubuntu 11.10, and no other user-level processes were running during the trials.

3.1 Quality of the best vector over time

From here on, let the term best vector be the shortest vector that an algorithm
knows at a given point in time. Once the algorithm ends, this vector will coincide
with a shortest vector of the lattice, unless the shortest vector is not found. The
interest of studying its progression over time is twofold. First, it provides insight
about the smoothness of the algorithm, and identifies possible discontinuities in
its progression. Second, it is essential to determine the progression of the quality
of its solution, since very short vectors can suffice to break cryptosystems.

In these experiments, ListSieve and GaussSieve ran on lattices that were
BKZ-reduced with blocksize 10. Bigger blocksizes rend the assessment of the pro-
gression of the algorithm over time useless, since BKZ almost finds the shortest
vector per se. We depict the norm of the first vector in L (the current best vec-
tor), at the end of each iteration, i.e., after the generation of the random vector
as well as its reduction (pairwise-reduction in GaussSieve). Figure 1 shows the
evolution of the quality of the best vector in ListSieve and GaussSieve, over time,
for lattices in dimensions 50 and 60, respectively. Not surprisingly, GaussSieve
converges faster than ListSieve. Nonetheless, the total number of changes of the
best vector during a run is of the same order. Although the smoothness of the
algorithms are somewhat alike, GaussSieve finds new best vectors faster.

As shown in Figure 1, no new vectors are found until roughly half of the
total running time, for both algorithms. The total running time for ListSieve
(resp. GaussSieve) in dimension 50 is 52 (resp. 9.8) seconds. However, a shortest
vector is already found after 30.16 (resp. 7.94) seconds. The reason why both
algorithms do not terminate at that point is because the norm of the shortest

4 http://cseweb.ucsd.edu/~pvoulgar/impl.html
5 http://www.latticechallenge.org/svp-challenge/

Empirical comparison of parallel ListSieve and GaussSieve 7

0 10 20 30 40 50
1,850

1,900

1,950

2,000

2,050

2,100

Execution time (s)

C
u
rr
en
t
b
es
t
n
or
m

GaussSieve
ListSieve
Goal norm

(a)

0 1,000 2,000 3,000 4,000 5,000
1,900

2,000

2,100

2,200

2,300

2,400

Execution time (s)

C
u
rr
en
t
b
es
t
n
or
m

GaussSieve
ListSieve
Goal norm

(b)

Figure 1. Best vector’s quality over time in ListSieve and GaussSieve, for lattices in
dimension 50 in (a) and 60 in (b).

vector (i.e., λ1) is not known upfront for a given lattice. In fact, the algorithms
terminate if a given number of collisions take place (cf. Section 2). If λ1 was
known upfront, ListSieve (resp. GaussSieve) could be sped up by a factor of 1.72
(resp 1.23). In dimension 60, the results are very similar.

3.2 Runtime complexity

We conducted a sequence of trials to empirically determine the growth of List-
Sieve’s runtime, in comparison to GaussSieve. Prior to these trials, it had been
shown that the empirical growth of GaussSieve was governed by 20.57n−23.5, for
a lattice in dimension n, on a given architecture [13], but no comparison with
ListSieve was provided.

Our trials show that the execution time of ListSieve grows according to
20.58n−22.33, whereas GaussSieve’s grows according to 20.568n−25.46. To arrive
at this model, we ran the algorithms with several lattices, in dimensions 50-66,
in steps of 2. Figure 2 shows both the runtime of ListSieve and GaussSieve and
the total number of iterations required for convergence. The execution time of
both algorithms differs by an (almost) constant factor. The same holds for the
total number of iterations.

3.3 Used vectors, list size and iterations

In both algorithms, L is consulted in every iteration to reduce the sampled vector.
The longer this list, the longer the runtime, unless the algorithm only accesses
the vectors ultimately selected for reduction, regardless of L’s size.

To partially overcome this problem, these algorithms stop accessing vector
vi+1 and subsequent ones when vector vi is not suitable for the reduction process
due to its norm. To this end, the vectors in L must remain ordered by increasing
norm, and it is additionally assumed that a vector p is not reduced against a

8 Artur Mariano, Özgür Dagdelen, and Christian Bischof

10

100

1000

10000

50 52 54 56 58 60 62 64 66

E
xe

cu
tio

n
tim

e
(s

)

Dimension

ListSieve
GaussSieve

(a)

214

215

216

217

218

219

50 52 54 56 58 60 62 64 66

#I
te

ra
tio

ns

Dimension

ListSieve
GaussSieve

(b)

Figure 2. Runtime, in (a), and number of iterations, in (b), for ListSieve and
GaussSieve, for lattices in dimensions spanning from 50 to 66, in steps of 2.

vector v in the list, if v’s norm is larger than p’s. While checking L for suitable
vectors becomes less of a problem with this optimization, both the complexity
and time of adding vectors to L are increased. As both lookups and insertions
in L occur at every iteration, except for collisions, this does not represent an
improvement in terms of complexity. In short, this only shifts the problem, it
does not solve it.

Ideally, L would only keep vectors that are ultimately selected for the re-
duction process. While maintaining the benefits of an ordered list, it would also
avoid (expensive) insertions of worthless vectors in L. To this end, one could set
a norm bound, after which vectors would be discarded. However, the selection of
a bound is not a simple task. First, no good bound is known upfront and exper-
iments should be conducted to empirically determine one. Second, the precise
impact of not using all the possible vectors in the reduction process is yet to be
determined, although this greatly affected GaussSieve in a negative way [12].

To this end, we verified how many vectors are actually used during an exe-
cution of ListSieve and what is the latest element in L that sampled vectors are
reduced against. This is very difficult to determine in GaussSieve because vec-
tors might fluctuate between the list and the stack, and their reduction process
is not concluded at the end of each iteration. Table 1 shows the final and max
list size, the iterations of each algorithm, and two additional parameters that we
analyzed for ListSieve and GaussSieve:

- Max. used vectors, which indicates the maximum number of vectors in L
used to reduce a sampled vector, among all the iterations of the algorithm.

- Latest used vector, which indicates the latest position in the list that the
randomly generated vector was reduced against.

As explained in Section 2, the size of L in GaussSieve changes during its
execution. Table 1 shows the maximum list size in GaussSieve’s execution. The
number of iterations for convergence grows slightly faster for ListSieve than

Empirical comparison of parallel ListSieve and GaussSieve 9

Algorithm ListSieve GaussSieve

Lattice dimension 40 50 60 40 50 60

Max. used vectors 83 109 153 Not applicable
Latest used vector 2969 14241 77125 Not applicable
Final list size 5748 39385 271766 Not relevant
Max list size Not applicable 1130 4182 17826
Iterations 6523 43474 299083 5044 28777 184790

Table 1. Stats for ListSieve and GaussSieve, for lattices in dimension 40, 50 and 60.

for GaussSieve. That is, while ListSieve requires ≈30% more iterations than
GaussSieve for dimension 40, that factor is ≈50% (resp. ≈60%) in dimension 50
(resp. 60). Moreover, only a small number of vectors are used for the reduction
process in ListSieve. For instance, only at most 83 vectors are used in the reduc-
tion process of the lattice in dimension 40, while the list contains 5748 vectors
at the end of the execution. Interestingly, the number of used vectors merely
doubles from dimension 40 to 60, whereas the list size becomes 47 times bigger.

Another important observation is that ListSieve does not use any vector for
reduction after a certain position. The latest used vector was only roughly at the
middle of the list for dimension 40, and seems to be smaller for higher dimensions.
As a result, it might be possible to set a limit of vectors that L holds, without
impairing performance, an issue which we will investigate in the future.

4 Parallel implementation of ListSieve

In contrast to GaussSieve, which has been parallelized on multi-core CPU-
platforms [10,12], there are no studies concerning the parallelization of ListSieve.
We think that the main reason for the lack of studies addressing the paralleliza-
tion of ListSieve is the (unverified) belief in its impracticality. There are es-
sentially three reasons for studying the parallelization of ListSieve. First, as we
show in this paper, the performance variations between ListSieve and GaussSieve
are not as big as thought. Second, it was previously suggested that parallel ver-
sions of ListSieve could possibly outperform parallel versions of GaussSieve [12],
a claim that we address first-hand. Third, ListSieve is much easier to port to
parallel architectures, such as GPUs.

We implemented and assessed the performance of a parallel version of List-
Sieve, written in C, which makes use of OpenMP to manage the execution of
threads. The list L was implemented as a singly linked list, where each element
points to its successor. Each thread follows the workflow of the original algo-
rithm: they sample a vector p, reduce it against every element v in L, thereby
generating p’, and insert p’ in the list L. To avoid the use of synchronization,
each thread inserts an element p’, between two vectors v1 and v2, in the list L,
by setting p’’s next pointer pointing to v2 and then setting v1’s next pointer
pointing to p’.

10 Artur Mariano, Özgür Dagdelen, and Christian Bischof

This relaxes the properties of the algorithm, which results in a smaller re-
duction process. There are two relaxations that might occur. First, (1) a given
thread t1 might be reducing its sample p1 in position k1 of the list L while an-
other thread t2 inserts a vector p2 in position k2, with k2 < k1. As a result, the
reduction of p1, by thread t1, will not take the vector p2 into account in that
iteration, which we refer to as a missed reduction. Note that the vector will be
visible in the following iteration. Second, (2) a sample is lost if two threads try
to insert their samples at contiguous positions of L.

We found out that this synchronization-avoiding relaxation of the properties
of ListSieve did not change the quality of the output, since the output of every
run of our parallel ListSieve implementation was identical to the output of the
gsieve library. This is not completely surprising, as (1), i.e. missing reductions,
does not seem problematic because reductions will only be missed in a specific
iteration (if missed at all), and the reduction could actually be unsuccessful in
first place and (2), i.e. losing vectors, is very unlikely to happen, due to the
length of the list, and the fact that threads are not likely to insert vectors in L
at the same time.

The stopping criterion of the implementations is as defined in Section 2, set
up with α = 0.1 and β = 200. The code was compiled with g++ 4.6.1 (since
NTL, used for BKZ, is written in C++) with the optimization flag -O2, which
showed to be slightly better than -O3. Lattices were reduced with BKZ, with
blocksize 20. Every experiment was repeated three times and the best sample
was chosen. The elapsed time of lattice reduction is not included.

Figure 2 shows the execution time of our parallel version of ListSieve, for
lattices in dimensions 40, 50 and 60, with 1-32 threads, on the test platform
described in Section 3. As shown in Table 2, the speedup and efficiency are quite
modest for dimension 40, because there is not enough work to compensate for
the parallel execution overhead. For bigger lattices, the speedup is super-linear
for all cases except for 32 threads in dimension 50, which concerns the use of
SMT. In fact, with SMT, the efficiency drops for the three lattices. For dimension
60, the speedup and efficiency seem to grow with the number of threads, which
means that the more threads are used, the more the properties of ListSieve are
relaxed. As a result, it might happen that, for a very high number of threads,

Dimension 40 Dimension 50 Dimension 60

Threads R S E R S E R S E
1 1.1228 1.00 100% 33.7169 1.00 100% 2210.7188 1x 100%
2 0.4861 2.31x 116% 13.8189 2.44x 122% 770.3057 2.87x 144%
4 0.2587 4.34x 109% 6.1101 5.52x 138% 326.5866 6.77x 169%
8 0.2384 4.70x 59% 3.0440 11.08x 139% 150.8266 14.66x 183%
16 0.2657 4.23x 26% 1.9017 17.73x 111% 75.8777 29.14x 182%
32 0.2414 4.65x 15% 1.7373 19.41x 61% 49.1252 45.00x 141%

Table 2. Runtime (R) in seconds, Speedup (S) and Efficiency (E) of our implementa-
tion on three lattices. The grayed out row, for 32 threads, concerns the use of SMT.

Empirical comparison of parallel ListSieve and GaussSieve 11

the number of missed reductions becomes problematic and more iterations are
required for convergence, which will impair scalability.

We also compared our implementation with the parallel GaussSieve imple-
mentation described in [12], from here on referred to as Milde2011. The code was
provided by the authors. The implementation makes use of a ring structure con-
necting several instances of GaussSieve, each containing a local list, and a private
stack S. Each thread samples a new vector p and reduces it against the elements
in its local list. Afterwards, p’ is handed over to the next thread which itself
reduces the vector further against the elements in its local list. When the vector
returns to the thread that released it, it is added to the local list of that thread.

Figures 3(a) and 3(b) compare the performance of our implementation and
Milde2011, on lattices in dimensions 60 and 70, respectively. For the sake of
convenience, the lattice in dimension 70 was BKZ-reduced with blocksize 32, for
both implementations. For the lattice in dimension 60, Milde2011 scales only
up to 4 threads, and with 32 threads, at a limited rate. As our implementation
scales super-linearly, it beats GaussSieve for 8 and more threads. For the lattice
in dimension 70, Milde2011 scales better, but also at a much lesser degree than
our implementation. As a result, our implementation outperforms Milde2011 for
more than 8 threads. Note that GaussSieve is clearly faster for 1 thread, in both
cases. This result indicates that ListSieve is indeed a practical SVP-solver and
might take more advantage of massively parallel architectures than GaussSieve.

5 Conclusions

In this paper, we presented the results of a comprehensive empirical comparison
of ListSieve and GaussSieve, two sieving algorithms that are very relevant in
lattice-based cryptography. Although ListSieve has been considered impractical,
we show that it can indeed be practical, especially on parallel platforms.

25

26

27

28

29

210

211

1 2 4 8 16 32

E
xe

cu
tio

n
tim

e
(s

)

#Threads

pListSieve
Milde2011

(a)

211

212

213

214

215

216

217

1 2 4 8 16 32

E
xe

cu
tio

n
tim

e
(s

)

#Threads

pListSieve
Milde2011

(b)

Figure 3. Comparison of our ListSieve implementation (pListSieve) and Milde2011 for
a BKZ-reduced lattice with blocksize 20 in dimension 60 (a) and 70 in (b).

12 Artur Mariano, Özgür Dagdelen, and Christian Bischof

Another surprising discovery is that ListSieve only uses a small number of
the stored vectors, a ratio that decreases with the dimension of the used lattice.
This is very important because it might be used to reduce the memory usage of
the algorithm, a critical problem of sieving algorithms.

Our parallel implementation of ListSieve relaxes the properties of the algo-
rithm, allowing (1) some vector reductions to be missed and (2) some vectors
to be lost, for the sake of reduced synchronization overhead. It achieves super-
linear speedups on a multicore CPU-chip for up to 32 threads. In particular, an
efficiency level of 182% is achieved for 16 threads on a lattice in dimension 60.
As a result, it outperforms the parallel Milde2011 GaussSieve implementation
for a large number of threads, a question posed in [12] that was open to this day.
Among other factors, this result is particularly relevant because the algorithm is
a better candidate than GaussSieve to run on massively parallel architectures,
such as GPUs, since it has fewer dependencies, especially if the properties of
ListSieve are relaxed as we propose in this paper.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC ’96. pp. 99–108. ACM (1996)

2. Ajtai, M.: The Shortest Vector Problem in L2 is NP-hard for Randomized Reduc-
tions (Extended Abstract). In: STOC ’98. pp. 10–19. ACM, NY, USA (1998)

3. Fitzpatrick et al.., R.: Tuning GaussSieve for Speed. In: LATINCRYPT’14. Flo-
rianópolis, Brazil (September 2014)

4. Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
Euro-Par 2010, LNCS, vol. 6272, pp. 211–222. Springer (2010)

5. Detrey, J., et al.: Accelerating Lattice Reduction with FPGAs. In: LATINCRYPT
’10, LNCS, vol. 6212, pp. 124–143. Springer (2010)

6. Gama, N., et al.: Lattice enumeration using extreme pruning. In: EUROCRYPT
’10. LNCS, vol. 6110. Springer (2010)

7. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: SODA
’00. pp. 937–941 (2000)

8. Kuo, P.C., et al.: Extreme Enumeration on GPU and in Clouds. In: CHES 2011,
LNCS, vol. 6917, pp. 176–191. Springer (2011)

9. Lenstra, A., et al.: Factoring polynomials with rational coefficients. Mathematische
Annalen 261(4), 515–534 (1982)

10. Mariano, A., et al.: Lock-free GaussSieve for Linear Speedups in Parallel High
Performance SVP Calculation. In: SBAC-PAD’14. Paris, France (2014)

11. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: SODA ’10. pp. 1468–1480. PA, USA (2010)

12. Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the shortest
vector problem in lattices. In: PaCT’11. pp. 452–458. Springer (2011)

13. Schneider, M.: Analysis of Gauss-Sieve for Solving the Shortest Vector Problem in
Lattices. In: WALCOM ’11, LNCS, vol. 6552, pp. 89–97. Springer (2011)

14. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Programming 66(1-3), 181–199 (1994)

15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

