
SPECULATIVE EXECUTION MULTI-CORE AND FPGA NELDER-MEAD
IMPLEMENTATIONS FOR HIGH PERFORMANCE UNCONSTRAINED OPTIMIZATION

Artur Mariano

Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Paulo Garcia, Tiago Gomes

Centro Algoritmi
Universidade do Minho

Guimarães, Portugal
paulo.garcia@algoritmi.uminho.pt,
tiago.a.gomes@algoritmi.uminho.pt

ABSTRACT

This paper proposes a new parallel version of the Nelder-
Mead algorithm - based on speculatively executing the oper-
ations applied to the simplex - implemented in two different
ways of controlling the fork-and-join mechanism. It also
compares these x86 parallel and sequential versions of the
algorithm with handwritten and automatic C-to-RTL FPGA
designs. As the execution flow of the software is replicated
in the FPGA designs, it is also compared the efficiency of
the synchronization of different execution flows, when im-
plemented by software and hardware.

Performance trials of these versions where performed
using (i) a last-generation FPGA and a last generation multi-
core CPU-chip to run the software versions and (ii) rela-
tively simple objective functions in R2. Results show that
performance of the handwritten hardware design is relatively
equivalent to the sequential software version of the algo-
rithm, although it is considerably more energy efficient, since
it runs at a much lower clock frequency (average of 1.9Mhz
vs 3.4GHz). They also suggest that the synchronization meth-
ods employed to control the speculative execution are too
expensive when managed by software, but efficient if man-
aged by hardware.

1. INTRODUCTION

One of the most fundamental principles in our world is the
search for an optimal state [1]. In applied mathematics and
numerical analysis, this is often called optimization, i.e., the
process of trying to find the best possible elements x? in X
in such a way that an objective function F(x?) is either max-
imized or minimized, depending on the target goal. Factors
such as discontinuity and multiplicity of both local maxima
and minima increase the complexity of the problem.

One particular class of optimization is unconstrained op-
timization. The goal is to locate a minimizer x? of a given
(nonlinear) function f : Rn → R. If f is nonsmooth or

even discontinuous at some points in Rn, the optimization
method should only use the function values of f , since the
derivatives of f may not exist for a particular point. Methods
within this category are usually called Direct Search Meth-
ods (DSMs). Some of these derivative-free methods have
been proposed in the past decades [2], including Spendley-
Hext-Himsworth’s method [3], Powell’s method [4] and the
Nelder-Mead algorithm [5], the focus of this paper.

The Nelder-Mead algorithm [5] is one of the best known
algorithms for multidimensional unconstrained optimization
without derivatives [6]. Beyond solving the classical uncon-
strained optimization problem, it is also used to solve pa-
rameter estimation and similar statistical problems [7, 8, 9].
Libraries implementing the Nelder-Mead mainly differ on
the used stopping criterion [10].

As the Nelder-Mead algorithm can become computa-
tionally expensive, especially for high simplex dimensions
and discontinuous objective functions, effective utilization
of hardware resources is mandatory if high performance is
to be achieved. This motivates the implementation and as-
sessment of parallel versions of the Nelder-Mead algorithm
for multi-core CPU-chips and FPGAs.

The goals of this paper are: (i) to implement and assess
novel software parallel versions of the Nelder-Mead algo-
rithm for shared-memory multi-core chips, (ii) to evaluate
the suitability of re-configurable logic for this algorithm and
(iii) to compare the two approaches, when considering rel-
atively simple (although hard-to-optimize) functions in R2.
FPGAs are particularly suited for comparison since the exe-
cution flow of the software versions can be replicated in an
FPGA design, therefore enabling the comparison of the effi-
ciency of the fork-and-join synchronization by software and
hardware. According to the best knowledge of the authors,
there are neither disclosed parallel versions of the Nelder-
Mead algorithm for shared-memory CPU-chips, nor imple-
mentations for FPGAs.

The main contributions of this paper are the following:

- The specification and assessment of a new parallel
Nelder-Mead algorithm’s version, which speculatively
calculates the simplex basic operations in parallel;

- The implementation of the specified version, using
two different methods for the creation and manage-
ment of the fork-and-join mechanism that enables spec-
ulative execution;

- The assessment and comparison of the new parallel
software Nelder-Mead’s version with a sequential soft-
ware version, both running on a last-generation CPU-
chip, and two hardware designs, based on manual and
automatic C-to-RTL synthesis.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the Nelder-Mead algorithm and analyzes its
execution flow. Section 3 presents the implementation de-
tails of the devised software versions whereas the hardware
implementation is covered in Section 4. Section 5 presents
the results of the performed trials. Section 6 describes some
related work and Section 7 concludes the paper.

2. THE NELDER-MEAD ALGORITHM

2.1. Algorithm’s description

Nelder-Mead is an iterative algorithm that defines a simplex
at each iteration. A simplex S in Rn is defined as the con-
vex hull of n+1 vertices x0,x1,...,xn ∈ Rn. For instance, a
simplex in R2 is a triangle (see Figure 1), and a simplex in
R3 is a tetrahedron. At the beginning of each iteration k, the
notation Sk := < X0, X1, ..., Xn > represents the simplex
with vertices ordered in an increasing manner with regard to
their correspondent function values, i.e., f(X0) ≤ f(X1) ≤
... ≤ f(Xn), where X0 is the best vertex, X1 is the second
vertex and Xn is the worst vertex. Vertices represented by
xi, in the simplex, are not ordered in relation to Xi vertices.

X0

X1X2

Fig. 1. An initial simplex in R2.

The Nelder-Mead algorithm is based on auxiliary points
- candidates to be a vertex of the simplex defined at each
iteration - accepted or rejected on the basis of a compari-
son between their correspondent function values and f(X0),
f(Xn−1) and f(Xn). To compute the auxiliary points, the
version used in this work uses four operations, referred to
as basic operations: reflection, contraction, expansion and

shrinkage, associated with scalar parameters α, γ and β that
satisfy 0 < α ≤ 1, γ >1 and 0 < β < 1.

At each iteration, the centroid x̄ - the medium point of
the hyperplane defined by X0, X1, ..., Xn−1 - is calculated
as:

x̄ =
1

n

n−1∑
i=0

Xi. (1)

Once the centroid x̄ is calculated, the algorithm calcu-
lates the reflection vertex xr (see Figure 2) as:

xr = (1 + α)× x̄− α×Xn. (2)

X0

X1X2

Xr

X
_

Fig. 2. Reflection vertex, in R2.

The quality of xr is assessed with basis on the result of
f(xr) and the function values of some other vertices, a test
referred to as the reflection vertex test (RVT). In particular,
xr can be considered very good, good, weak or very weak.
When xr is considered good, that is, if f(X0) ≤ f(xr) <
f(Xn−1), no additional calculations are performed, the new
vertex xr is accepted and the simplex Sk+1, for the next iter-
ation, is < X0, X1, ..., Xn−1, xr >. In the remaining cases,
additional steps are computed:

1. If xr is considered very good, i.e., f(xr) < f(X0),
the algorithm performs an expansion of the simplex.
The expansion vertex xe is calculated (see Figure 3)
as:

xe = γ × xr + (1− γ)× x̄. (3)

If xe is very good, i.e., f(xe) < f(X0), xe is accepted
and Sk+1 :=< X0, X1, ..., Xn−1, xe >. Otherwise,
xr is accepted instead and Sk+1 :=< X0, X1, ...,
Xn−1, xr >.

X0

X1X2

Xr

X
_

Xe

Fig. 3. Expansion vertex, in R2.

2. If xr is considered weak, i.e., f(Xn−1) ≤ f(xr) <
f(Xn), the algorithm performs a contraction to the
exterior. The outside contraction vertex x̂c (see Figure
4) is calculated as:

x̂c = β × xr + (1− β)× x̄. (4)

If x̂c is good (f(x̂c) < f(Xn−1)), x̂c is accepted and
Sk+1 :=< X0, X1, ..., Xn−1, x̂c >. Otherwise the
simplex is shrunk. Shrinking the simplex consists of
replacing each vertex Xi, for i=1,...,n, by the mean
point xi of the segment that connects Xi to X0:

xi =
Xi +X0

2
. (5)

X0

X1X2

Xc

X
_

Xr

âx

Fig. 4. Outside contraction vertex, in R2.

3. If xr is considered very weak, i.e., f(xr) ≥ f(Xn),
the algorithm performs a contraction to the interior.
The inside contraction vertex xc is calculated as:

xc = β ×Xn + (1− β)× x̄. (6)

If xc is good (f(xc) < f(Xn−1)), xc is taken and
Sk+1 :=< X0, X1, ..., Xn−1, xc >. Otherwise, the
simplex is shrunk and Sk+1 :=< X0, x1, ..., xn−1, xn >.

In the proposed implementations, the parameters are set
as follows: α = 1, γ = 2 and β = 1

2 . The stopping criterion,
tested at each iteration, verifies if the simplex size is smaller
than or equal to a given amount ε > 0 (≈ 0), i.e.:

1

∆
max1≤i≤n ||Xi −X0||2 ≤ ε (7)

where ∆ = max(1, ||X0||2) and ε = 10−16.
If the stopping criterion is verified, the algorithm stops

and the first vertex of the ordered simplex, X0, is considered
the final result, since it provides the best approximation to
the minimizer of the objective function.

2.2. Execution-flow analysis

The Nelder-Mead algorithm tries to improve the simplex (and
consequently its solution) at each iteration, based on the cal-
culation of the centroid. The computational requirements of

the algorithm become particularly high when a large number
of iterations are required for convergence. No iterations can
be processed in parallel, nor can an iteration be parallelized
itself, unless it is based on applying a shrinkage to the sim-
plex. However, this operation is too cheap to be worth com-
puting it in parallel.

After initializing the process, the algorithm calculates
the centroid, the reflection vertex and the RVT, which as-
sesses the reflection vertex and determines which operations
must be applied to the simplex. When the reflection ver-
tex is considered good, only the simplex is updated, which
involves low overhead. When the reflection vertex is con-
sidered weak, an outside contraction is performed. For the
very weak case, the algorithm performs an inside contrac-
tion. When the reflection vertex is considered very good,
an expansion is done instead. Except when the reflection
vertex is considered good, which requires no further work,
every case consists of a basic operation and an associated
test, as described in Section 2.1.

As the complexity of the contraction (either to the ex-
terior or to the interior) and the expansion basic operations
require the same number and type of operations to be per-
formed, their associated tests determine how computation-
ally expensive each case is. In that regard, classifications
are ordered as good < very good≤ weak≤ very weak, from
the least to the most expensive. As an exception of this clas-
sification, the weak case might be more expensive than the
very weak case, if a shrinkage is required in the weak case
but not required in the very weak one. The exact cost of each
iteration depends primarily on the objective-function and, at
a lesser extent, on the stage of the simplex.

3. SOFTWARE IMPLEMENTATIONS

A sequential version of the algorithm was implemented in
line with the algorithm description in Section 2.1. Two par-
allel versions were developed to calculate the basic oper-
ations in a thread-level speculative execution fashion (see
e.g., [11]). All code is written in C and parallel versions are
implemented with pThreads. Although OpenMP provides a
more convenient programming interface, it does not allow
task killing, a functionality one of the proposed versions de-
pends on.

Similarly to branch prediction in computer architecture,
but for a broader number of cases, all basic operations are
computed before the result of the RVT is known. In each
iteration, the RVT calculation is overlapped with the paral-
lel speculative computation of the basic operations, referred
to as “decision paths”, i.e., good, very good, weak and very
weak. This is expected to boost performance when several
iterations are required to convergence, as long as each com-
putation is executed on a different core. A process p runs
the algorithm and manages thread creation, destruction and

synchronization. As soon as the result of the RVT is known,
one of the four computations is committed (process p might
need to wait for its completion), whereas the others are dis-
carded.

The implemented parallel versions differ on how they
discard unnecessary computation. In both versions, four
threads are created by process p - one per decision path -
each maintaining a local, auxiliary, simplex. When created,
threads immediately block on a private condition. The sim-
plex used by the algorithm, i.e., by process p, is referred to
as global simplex, also because it is visible to all threads.

At the beginning of each iteration, conditions are sig-
naled and threads released, so they can copy the global sim-
plex to their local simplices, with which they perform their
respective operations. When threads are released, local sim-
plices are coherent copies of the global simplex. At each
iteration and depending on the result of the RVT, one thread
is marked as valid whereas the remaining are marked as in-
valid. Also at each iteration, process p copies the local sim-
plex of the valid thread to the global simplex, which might
require waiting for the completion of the thread.

P
ro

ce
ss

 p
 /

T
h

re
a
d

 t

p

p

t0

t1

t2

t3

G
o
o
d

W
e
a
k

V
e
ry

G
o
o
d

V
e
ry

W
e
a
k

RVT calculation Stall Synchronization Point

Time

Thread killing
and creation

...

...

...

...

Start of
Application

Start of
Fork-and-join

Fig. 5. Execution flow of the first iteration of a sample run in
the first parallel version of Nelder-Mead, where the reflec-
tion vertex is considered good. Qualitative plot, not drawn
to scale.

In the first version, referred to as “thread killing” ver-
sion, process p waits for the valid thread until the result of
the RVT is known, copies its simplex and kills the remaining
threads. As each thread performs a decision path and dies,
process p waits for them with the pthread join primi-
tive. In order to kill invalid threads, a SIGSEGV signal is
send (using the pthread kill primitive), forcing threads
to finish. As soon as the local simplex is copied, four new
threads are created (with pthread create) and the pro-
cess continues. As stated earlier, threads are released in the
beginning of the subsequent iteration, after testing the stop-
ping criterion.

The second version, referred to as “persistent threads”

version, was motivated by the high cost of thread destruction
and creation, present at each iteration. Unlike the first ver-
sion, the second version does not kill and create new threads
to maintain the fork-and-join mechanism, relying on four
threads persistent across the whole application’s lifetime and
synchronization methods instead.

P
ro

ce
ss

 p
 /

T
h

re
a
d

 t p

p

p

p

t0

t1

t2

t3

G
o
o
d

W
e
a
k

V
e
ry

G
o
o
d

V
e
ry

W
e
a
k

RVT calculation Stall Synchronization Point

TimeStart of
Application

Start of
Fork-and-join

Fig. 6. Execution flow of the first iteration of a sample run
in the second parallel version of Nelder-Mead, where the
reflection vertex is considered good. Behavior of process p
shown in light gray for remaining cases. Qualitative plot,
not drawn to scale.

In the second version, process p has a set of four pThread
conditions in which it blocks as a means of waiting for the
completion of the thread. Process p uses these conditions to
wait for the valid thread, by blocking on the correspondent
one until the valid thread awakes it by releasing the condi-
tion. When this happens, the valid thread blocks itself on
its condition until the next iteration starts (similarly to the
“thread killing” version). As the remaining threads might
still be computing their associated basic operations, process
p resets them, by changing a variable read by every thread.
Changing this variable is a lock-free operation. As a result,
invalid threads might execute (a few) additional operations,
very likely overlapped with the end of the iteration, which
includes the stopping criterion calculation. Threads execute
their respective operations on two nested loops where the
outermost loop is executed indefinitely. When the “stop-
ping” variable changes, threads break the inner-loop, which
is executed again, since the outermost loop is infinite.

4. HARDWARE IMPLEMENTATION

4.1. RTL Nelder-Mead Implementation

The Nelder-Mead algorithm was implemented on a Xilinx
Virtex-7 FPGA. Every variable (e.g., vertices and interme-
diate values used for calculations) is implemented in both

the 32 and 64-bit floating point representation defined by the
IEEE 754-2008 standard, and all operations are performed
using the embedded FPGA DSP blocks. The system im-
plements input ports to set initial simplex values and out-
put ports to display the result, as well as input/output con-
trol/status signals, e.g., start operation, calculation done. In
order to maximize processing speed, the implementation at-
tempted to parallelize computations as much as possible.
Hence, the system is composed of four execution paths com-
puting concurrently, in a similar fashion to the speculative
execution in software versions, which determine the next
iteration value for good, very good, weak and very weak
vertices, respectively. Common operations to all execution
paths at the beginning of each iteration, such as the vertex
sorting, are executed by a single module which propagates
results to the execution paths. The evaluation function mul-
tiplexes which computation path’s output is written back to
the simplex registers. A simplified block diagram of the sys-
tem is depicted on Figure 7.

Fig. 7. Simplified block diagram of the FPGA Nelder-Mead
design.

Each execution path is exclusively composed of combi-
national logic. At each clock cycle, the new simplex value
is updated on the simplex register. Following this approach,
each clock cycle corresponds exactly to one iteration of the
algorithm. This is motivated by the fact that, albeit each
computational path can be executed in parallel, there is no
possible parallelism between sequential iterations, i.e., each

iteration requires the final value of the previous one to be-
gin computation. This approach is highly area-demanding,
since functional units that are used by several paths (such as
the module which implements the objective function) must
be replicated in order to allow concurrent computation. If
multi-cycle execution was performed, replication of func-
tional units could be avoided, but the overall execution time
would increase since execution paths would have to be stalled
in case of concurrent access. As this work is focused on
studying and developing high performance Nelder-Mead ver-
sions, performance-area trade-offs fall outside the scope of
this research. As previously mentioned, the function to op-
timize is also implemented on-chip. This approach requires
re-synthesis whenever a new function is desired, but offers
the highest performance. If the function was implemented in
a more flexible way (e.g. off-chip), communication delays
would decrease performance [12].

Table 1 presents the resource utilization rates for every
implemented function. The design does not use BRAMs or
DFFs. DSP blocks, on the other hand, are considerably used,
especially in the 64-bit version, due to the wide number of
64-bit floating point arithmetic operators in the algorithm.

The design was implemented using tools from the Xil-
inx’s Vivado 2012 Suite, namely Xilinx ISE 14.3 for design
and implementation, including mapping, placing and rout-
ing, and Xilinx ISIM 14.3 for simulation.

Table 1. FPGA synthesis results. f represents frequency.
Function 1 2 3 4 5 6

32-bit

f (MHz) 3.591 3.582 3.730 2.821 2.380 2.701
Registers <1% <1% <1% <1% <1% <1%
LUTs 4.3% 4.5% 3.3% 9.0% 9.8% 9.6%
IOBs 40.1%
DSPs 28.5% 24.8% 18.1% 27.0% 20.3% 30.7%

64-bit

f (MHz) 2.147 2.148 2.123 1.880 1.398 1.713
Registers <1% <1% <1% <1% <1% <1%
LUTs 13.1% 15.0% 10.8% 16.9% 9.8% 18.4%
IOBs 80.2%
DSPs 87.9% 59.0% 49.4% 87.9% 58.9% 97.5%

Although the maximum operating frequency may appear
low for a hardware implementation (an average of 1.9MHz
for the 64-bit version), the system performs one algorithm
iteration per clock cycle, thus yielding very short execu-
tion times. As previously mentioned, there would be no
actual performance gain from introducing intermediate reg-
isters for multi-cycle operation at higher frequencies. The
current operating frequency is due to the large number of
floating point arithmetic modules cascaded on the datap-
ath. Using 64-bit precision also contributes to the low fre-
quency; this design decision was motivated by wanting to
achieve completely equivalent hardware and software im-

plementations (i.e., hardware registers are equivalent to soft-
ware double type variables). The 32-bit implementation re-
sults in a much more area-efficient implementation and pro-
vides moderate performance improvements. The smaller
resolution showed equivalent results for five functions, fail-
ing only on one function, where for certain inputs, the dif-
ference in resolution yielded different results, albeit approx-
imate. Experiments up to date indicate that 32 bit resolu-
tion is sufficient for most function optimizations using the
Nelder-Mead algorithm, thus future work will encompass
reducing resolution in order to further increase performance,
including using alternative encodings for increased through-
put [13]. Performance results were obtained through Xil-
inx’s ISIM timing (post place and route) simulation.

4.2. Manual vs automatic hardware generation

The software version of the Nelder-Mead algorithm was trans-
lated to hardware through the Xilinx HLS C-To-RTL gener-
ation tool. This approach presented worse results than the
ad hoc implementation, due to several reasons:

i) The tool unrolls only a few loops. The majority of
computations are implemented as multi-cycle hard-
ware paths, probably due to the wide number of func-
tion calls on several loops’ iterations.

ii) Albeit the C-To-RTL version yields much higher op-
erating frequency than the manual implementation, at
the cost of multi-cycle algorithm iterations, this re-
sults in no performance increase. This is due to the
fact that subsequent Nelder-Mead iterations cannot be
parallelized, therefore there is no gain from a pipelined
implementation. The higher number of intermediate
registers increases the setup-hold times in the critical
path, resulting in an overall slower execution.

Software version could be altered in order to achieve
better results in automatic synthesis, using code re-factoring
techniques encompassing hardware synthesis estimation [14],
but no such experimentation was performed and is post-
poned to future work.

5. RESULTS

The developed software versions were tested on a last gen-
eration CPU whereas the hardware versions were simulated
on a last generation FPGA. The characteristics of the tested
platforms are summarized in Table 2. Software versions
were compiled with gcc -O3. The execution time was
measured with the OpenMP omp get wtime() flag.

Six hard-to-optimize functions in R2, presented in Table
3 and known for having multiple local optima, were chosen
as case studies for benchmarking.

Table 3 also shows the initial simplices used for each
function. In particular, F3 is known as Rosenbrock’s func-
tion, F4 is a derivative of Griewank’s function, F5 andF6 are
respectively known as Schwefel and Rastringin functions.
The algorithm was limited to one hundred thousand itera-
tions for every function and every version, both in the CPU
and in the FPGA, the number of iterations taken by every
function due to the strict stooping criterion. The execution
times presented for each trial (optimization process of one
function) on the CPU is the mean of five runs, whereas the
hardware simulations are 100% accurate and have not been,
therefore, statistically treated.

Table 2. Test platform specifications. iC and dC stand for
instruction and data cache, respectively.

Device CPU FPGA

Manufacturer Intel Xilinx
Brand Core 5 Ivy Bridge Virtex 7
Model i5-3570K XC7VX485T
Max clock 3.4 GHz 300 MHz
Cores 4 -
System mem 16 Gbytes 68 Mbytes
L1 Cache 32kB iC+dC/core -
L2 Cache 256kB/core unified -
L3 Cache 6MB shared unified -
Year 2012 2012

5.1. CPU

The run time of the implemented software versions is shown
in Figures 8(a), 8(b) and 8(c). Both parallel versions are
slower than the sequential one, due to the fork-and-join mech-
anism’s overhead: either by creating and destroying threads
in the first version or by thread synchronization in the second
version. Not surprisingly, thread synchronization is more ef-
ficient than kill and create threads at each iteration, but it is
still slower than the sequential version.

While trials with functions in R2 show that the overhead
of the speculative execution mechanism kills any speedup,
more complex functions and functions in higher dimensions,
will mitigate the impact of the fork-and-join mechanism,
highly noticeable since calculating the used functions is a
very quick process.

CPU versions are optimized, mostly due to -O3 gcc flag,
and have less than 1% of L1 cache misses, as reported by
Cachegrind tool, in essence because simplices data struc-
tures fit on cache.

5.2. FPGA

Figure 9 shows the results of the FPGA, both for the C-to-
RTL version, in 9(a), and for the handwritten design in 9(b).

Table 3. Tested functions and their respective inputs.
Function Input Simplex

F1(x, y) = −40000x− 60000y + 5x2 + 10y2 + 10xy S = < (0.99,−0.34), (0.61, 1.39), (1.05,−1.895) >

F2(x, y) = 20000× ((x + 70)2 + (y + 275)2) + y2 + (y + 195)2 S = < (234.55, 8.32), (23.343, 34.33), (0.992, 2.23) >

F3(x, y) = 100(y − x2)2 + (1− x)2 S = < (0.081, 0.912), (92.2, 0.21), (18.11, 0.01) >

F4(x, y) = x× y × 0.7623 +
1

4000
×

∏i=2
i=1 x

2
i −

∑i=2
i=1 cos(xi) S = < (10.23, 0.16), (1.24, 0.7), (0.1, 0.1) >

F5(x, y) = 418.9820× 2−
∑i=2

i=1 xi × sin(
√
|xi|) S = < (2.234, 0.832), (1.118, 304), (1.999, 0.354) >

F6(x, y) = 20 + ((x2 − 10cos(2πx)) + y2 − 10cos(2πy)) S = < (20.667, 340.832), (1.2318, 200), (10.54, 0.7354) >

Sequential version

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.0190.0120.016

0.076
0.104

0.073

1 2 3 4 5 6

Ti
m

e
(s

)

(a) Sequential version

Parallel 'thread killing'

Function

0
1

2
3

4
5

6

3.9553.741
3.3853.4373.324

3.855

1 2 3 4 5 6

Ti
m

e
(s

)

(b) Parallel v. w/ thread killing

Ti
m

e
(s

)

Parallel 'persistent threads'

Function

0
1

2
3

4
5

6

0.4740.5260.5390.3830.481 0.4

1 2 3 4 5 6

(c) Parallel v. w/ persistent threads

Fig. 8. Total runtime, in seconds, for the devised Nelder-Mead CPU versions, for the six presented objective functions.

The latter was implemented with Verilog, according to the
description in Section 4.

As shown in Figures 8 and 9, the FPGA implementa-
tion offers higher and lower performance than the equivalent
software implementation, depending on the tested function.
However, the FPGA runs at a considerably lower clock fre-
quency (average of 1.9MHz of FPGA vs. 3.4GHz of the
CPU). As the design replicates the parallel software ver-
sions, one can also conclude that the FPGA performance
is not affected by synchronization issues, which are guaran-
teed by the used frequency.

6. RELATED WORK

A parallel version of the Nelder-Mead algorithm was pro-
posed earlier, using parallelization at the parameter level
[15]. However, the parallel version has a different search
path though the parameter space than the non-parallel al-
gorithm, in contrast to this paper. Moreover, the approach
relies on even finer grained parallelism than the presented
approach, thus likely unsuited for multi-core CPU-chips.

Both Nelder-Mead and Powell’s methods were global-
ized and parallelized on a distributed memory environment
with six single-core Pentium 4 machines running at 2.8 GHz,
following a server-client fashion [16]. This paper, on the
other hand, proposes parallel shared-memory and hardware
implementations.

A method for concurrent execution of the algorithm has

C−to−RTL Virtex 7

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.1030.1030.1030.1030.1030.103

1 2 3 4 5 6

Ti
m

e
(s

)

(a) C-to-RTL version

Virtex 7 Design Simulation

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.0470.0470.0470.0530.0720.058

1 2 3 4 5 6

Ti
m

e
(s

)

(b) Verilog simulation

Fig. 9. Total runtime, in seconds, both for a C-to-RTL ver-
sion and a 64-bit Verilog simulation of Nelder-Mead.

also been proposed [17], with better results than the Nelder-
Mead original algorithm on smooth, noisy, and functions
with many local minima. This paper is rather focused on
the original algorithm than on variants of it.

7. CONCLUSIONS

This paper introduced a novel parallelization of the Nelder-
Mead algorithm, to work on shared-memory multi-core CPU-
chips. It is based on speculatively executing the operations
to apply to the simplex, overlapping them with the RVT cal-
culation to therefore boost performance, by raising resource
usage. This technique was employed with success in two
different ways.

Trials with a 2D implementation of these versions, run-

ning on a quad-core CPU-chip, showed that even though
speculative execution is applicable, performance is degraded
due to (i) thread creation, destruction and synchronization
costs to manage the fork-and-join mechanism that maintains
the speculative execution and (ii) small computation overlap
between the RVT and decision paths. As a result, this ap-
proach is not profitable, unless the objective functions take
more time to compute, thus reducing the relative communi-
cation overhead.

Re-configurable logic has shown to deliver similar per-
formance to the CPU, but at a much lower clock frequency
and, consequently, energy efficiency. The FPGA design also
calculates all the four decision paths in parallel, but the ex-
ecution time is as long as the longest path. This suggests
that synchronization for fork-and-join mechanisms would
be considerably more efficient if implemented by hardware.
The results of a C-to-RTL version, converted with basis on
the sequential software version, showed that automatic con-
version is less efficient for this particular algorithm, espe-
cially due to the low resource utilization, a common handi-
cap of automatic synthesis.

The performance of both devices is strictly related with
the characteristics of the performed trials. FPGA designs
benefit from the use of both simple objective functions and
small dimensions. While complex objective functions would
favor the CPU’s parallel proposed variant, due to bigger com-
putation overlaps between the RVT and basic operations,
higher simplex dimensions would require more area in the
FPGA, already at ≈90% utilization rates for DSPs, in some
cases. At some point, area would be completely used and
performance would be decreased. Benchmarks of both more
complex objective functions and higher simplex dimensions
are scheduled for future work, as well as the assessment of
other methods to parallelize the algorithm by software.

8. ACKNOWLEDGMENTS

The authors would like to thank Edite Fernandes, Christian
Bischof and Michael Burger for their constructive comments
and suggestions aimed at improving the paper.

9. REFERENCES

[1] T. Weise, Global Optimization Algorithms - Theory and Ap-
plication, 2nd ed. Self published, May, 2009.

[2] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct Search
Methods: Then And Now,” Journal of Computational and
Applied Mathematics, vol. 124, pp. 191–207, 2000.

[3] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential
Application of Simplex Designs in Optimization and Evo-
lutionary Operation,” Technometrics, vol. 4, pp. 441–461,
1962.

[4] M. J. D. Powell, “An efficient method for finding the min-
imum of a function of several variables without calculating
derivatives,” The Computer Journal, vol. 7, no. 2, pp. 155–
162, January 1964.

[5] J. A. Nelder and R. Mead, “A Simplex Method for Function
Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–
313, January 1965.

[6] S. Singer and J. Nelder, “Nelder-Mead algorithm,” Scholar-
pedia, vol. 4, no. 2, p. 2928, 2009.

[7] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by
direct search: New perspectives on some classical and mod-
ern methods,” SIAM Review, vol. 45, pp. 385–482, 2003.

[8] M. J. D. Powell, “Direct Search Algorithms for Optimization
Calculations,” Acta Numerica, vol. 7, pp. 287–336, 1998.

[9] M. H. Wright, “Direct Search Methods: Once Scorned, Now
Respectable,” in Numerical Analysis 1995 (Proceedings of
the 1995 Dundee Biennial Conference in Numerical Analy-
sis), ser. Pitman Research Notes in Mathematics, D. F. Grif-
fiths and G. A. Watson, Eds., vol. 344. Boca Raton, Florida:
CRC Press, 1996, pp. 191–208.

[10] S. Singer and S. Singer, “Efficient Implementation of the
NelderMead Search Algorithm,” Applied Numerical Analy-
sis & Computational Mathematics, vol. 1, no. 2, pp. 524–534,
2004.

[11] H. K. Pyla, C. Ribbens, and S. Varadarajan, “Exploiting
coarse-grain speculative parallelism,” in Proceedings of the
2011 ACM international conference on Object oriented pro-
gramming systems languages and applications, ser. OOP-
SLA ’11. New York, NY, USA: ACM, 2011, pp. 555–574.

[12] K. Kanazawa and T. Maruyama, “An fpga solver for sat-
encoded formal verification problems,” pp. 38–43, 2011.

[13] F. de Dinechin, M. Joldes, B. Pasca, and G. Revy, “Mul-
tiplicative square root algorithms for fpgas,” in Field Pro-
grammable Logic and Applications (FPL), 2010 Interna-
tional Conference on, 2010, pp. 574–577.

[14] A. Cilardo, P. Durante, C. Lofiego, and A. Mazzeo, “Early
prediction of hardware complexity in hll-to-hdl translation,”
in Field Programmable Logic and Applications (FPL), 2010
International Conference on, 2010, pp. 483–488.

[15] D. Lee and M. Wiswall, “A Parallel Implementation of the
Simplex Function Minimization Routine,” Comput. Econ.,
vol. 30, no. 2, pp. 171–187, September 2007.

[16] A. Koscianski and M. A. Luersen, “Globalization and Par-
allelization of Nelder-Mead and Powell Optimization Meth-
ods,” Innovations and Advanced Techniques in Systems,
Computing Sciences and Software Engineering, pp. 93–98,
2008.

[17] A. Lewis, D. Abramson, and T. Peachey, “RSCS: a parallel
simplex algorithm for the Nimrod/O optimization toolset,”
in Parallel and Distributed Computing, 2004. Third Inter-
national Symposium on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks, 2004., July
2004, pp. 71–78.

