
SW and HW Speculative Nelder-Mead Execution
for High Performance Unconstrained Optimization

Artur Mariano
Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
artur.mariano@sc.tu-darmstadt.de

Paulo Garcia, Tiago Gomes
Centro Algoritmi

Universidade do Minho
Guimarães, Portugal

paulo.garcia@algoritmi.uminho.pt,
tiago.a.gomes@algoritmi.uminho.pt

Abstract— This paper addresses the performance assessment
of a new Nelder-Mead variant, that speculatively executes the
simplex operations. This new variant was implemented as x86
parallel and sequential CPU versions as well as in handwritten
and automatic C-to-RTL FPGA designs. As the execution flow is
the same on every version, the efficiency of the synchronization
by software and hardware is also accessed.

Performance trials of these versions where performed using
(i) a last-generation FPGA and a last generation multi-core
CPU-chip to run the software versions and (ii) relatively simple
objective functions in R2. Results show that performance of
the handwritten hardware design is relatively equivalent to the
sequential software version of the algorithm, even running at
a much lower clock frequency (average of 1.9Mhz vs 3.4GHz).
They also suggest that the synchronization methods employed to
control the speculative execution are too expensive when managed
by software, but efficient if managed by hardware.

I. INTRODUCTION

One of the most fundamental principles in our world is
the search for an optimal state [1]. In applied mathematics
and numerical analysis, this is often called optimization, i.e.,
the process of trying to find the best possible elements x?
in X in such a way that an objective function F(x?) is either
maximized or minimized, depending on the target goal. Factors
such as discontinuity and multiplicity of both local maxima
and minima increase the complexity of the problem.

One particular class of optimization is unconstrained op-
timization. The goal is to locate a minimizer x? of a given
(nonlinear) function f : Rn → R. If f is nonsmooth or
even discontinuous at some points in Rn, the optimization
method should only use the function values of f , since the
derivatives of f may not exist for a particular point. Methods
within this category are usually called Direct Search Methods
(DSMs). Some of these derivative-free methods have been
proposed in the past decades [2], including Spendley-Hext-
Himsworth’s method [3], Powell’s method [4] and the Nelder-
Mead algorithm [5], the focus of this paper.

The Nelder-Mead algorithm is one of the best known
algorithms for multidimensional unconstrained optimization
without derivatives [5]. Beyond solving the classical un-
constrained optimization problem, it is also used to solve
parameter estimation and similar statistical problems [6], [7].

As the Nelder-Mead algorithm becomes computationally
expensive for high simplex dimensions and discontinuous

objective functions, high high performance versions are de-
manded by industry and science communities. This motivates
the implementation and assessment of parallel versions of the
Nelder-Mead algorithm for multi-core CPU-chips and FPGAs.

The goals of this paper are: (i) to implement and assess
novel software parallel versions of the Nelder-Mead algorithm
for shared-memory multi-core chips, (ii) to evaluate the suit-
ability of re-configurable logic for this algorithm and (iii)
to compare the two approaches, when considering relatively
simple (although hard-to-optimize) functions in R2. FPGAs
are particularly suited for comparison since the execution flow
of the software versions can be replicated in an FPGA design,
therefore enabling the comparison of the efficiency of the fork-
and-join synchronization by software and hardware. Accord-
ing to the best knowledge of the authors, there are neither
disclosed parallel versions of the Nelder-Mead algorithm for
shared-memory CPU-chips, nor implementations for FPGAs.

The main contributions of this paper are the following:
- The specification and assessment of a new parallel

Nelder-Mead algorithm’s version, which speculatively
calculates the simplex basic operations in parallel;

- The implementation of the specified version, using two
different methods for managing the fork-and-join mech-
anism that enables speculative execution;

- The assessment and comparison of the new parallel
software Nelder-Mead’s version with a sequential ver-
sion, and two hardware designs, based on manual and
automatic C-to-RTL synthesis.

The remainder of the paper is organized as follows. Section
2 presents the implementation details of the devised software
versions whereas the hardware implementation is covered in
Section 3. Section 4 presents the results of the performed trials.
Section 5 describes some related work and Section 6 concludes
the paper. Due to space issues, the algorithm is not described
in the paper, but can be consulted in the original paper [5].

II. SOFTWARE IMPLEMENTATIONS

A. Execution-flow analysis

The Nelder-Mead algorithm tries to improve the simplex
(and consequently its solution) at each iteration, based on the
calculation of the centroid. The computational requirements of

the algorithm become particularly high when a large number
of iterations are required for convergence. No iterations can
be processed in parallel, nor can an iteration be parallelized
itself, unless it consists of a simplex shrinkage. However, this
operation is too cheap to be worth computing it in parallel.

After initializing the process, the algorithm calculates the
centroid, the reflection vertex and the reflection vertex test
(RVT), which assesses the reflection vertex and determines
which operations must be applied to the simplex. When the
reflection vertex is considered good, only the simplex is
updated, which involves low overhead. When the reflection
vertex is considered weak, an outside contraction is performed.
For the very weak case, the algorithm performs an inside
contraction. When the reflection vertex is considered very
good, an expansion is done instead. Except when the reflection
vertex is considered good, which requires no further work,
every case consists of a basic operation and an associated test.

As the complexity of the contraction (regardless its direc-
tion) and the expansion require the same number and type
of operations, their associated tests determine how computa-
tionally expensive each case is. In that regard, classifications
are ordered as good < very good ≤ weak ≤ very weak, from
the least to the most expensive. The weak case becomes more
expensive than the very weak case, if a shrinkage is required
in the weak case but not required in the very weak one. The
exact cost of each iteration depends primarily on the objective-
function and, at a lesser extent, on the stage of the simplex.

B. Devised versions

Two parallel versions were developed to calculate the basic
operations in a thread-level speculative execution fashion (see
e.g., [8]), in addition to a sequential version that follows the
original description. All code is written in C and parallel
versions are implemented with pThreads. Although more
convenient, OpenMP does not provide a way of killing tasks,
a functionality one of the proposed versions depends on.

Similarly to branch prediction in computer architecture,
but for a broader number of cases, all basic operations are
computed before the result of the RVT is known. In each
iteration, the RVT calculation is overlapped with the parallel
speculative computation of the basic operations, referred to as
“decision paths”, i.e., good, very good, weak and very weak.
This is expected to boost performance when several iterations
are required to convergence, as long as each computation is
executed on a different core. A process p runs the algorithm
and manages thread creation, destruction and synchronization.
As soon as the result of the RVT is known, one of the four
computations is committed (process p might need to wait for
its completion), whereas the others are discarded.

The implemented parallel versions differ on how they dis-
card unnecessary computation. In both versions, four threads
are created by process p - one per decision path - each
maintaining a local, auxiliary, simplex. When created, threads
immediately block on a private condition. The simplex used
by the algorithm, i.e., by process p, is referred to as global
simplex, also because it is visible to all threads.

At the beginning of each iteration, conditions are signaled
and threads released, so they can copy the global simplex to
their local simplices, with which they perform their respective
operations. When threads are released, local simplices are
coherent copies of the global simplex. At each iteration and
depending on the result of the RVT, one thread is marked as
valid and the remaining ones as invalid. Also at each iteration,
process p copies the local simplex of the valid thread to the
global simplex, which might require waiting for its completion.

The implemented versions, that follow this workflow, differ
on how thread management is handled. The first version,
referred to as “thread killing”, kills and creates threads at each
iteration, whereas the second version, referred to as “persistent
threads”, uses heavy synchronization to control the execution
of each thread. Figure 1 shows the second version’s workflow.

P
ro

ce
ss

 p
 /

T
h
re

a
d
 t p

p

p

p

t0

t1

t2

t3

G
o
o
d

W
e
a
k

V
e
ry

G
o
o
d

V
e
ry

W
e
a
k

RVT calculation Stall Synchronization Point

TimeStart of
Application

Start of
Fork-and-join

Fig. 1. Execution flow of the first iteration of a sample run in the “persistent
threads” version, where the reflection vertex is considered good. Process p
shown in light gray for remaining cases. Qualitative plot, not drawn to scale.

The second version, process p has a set of four pThread
conditions in which it blocks as a means of waiting for the
completion of a thread. Process p waits until the valid thread
awakes it by releasing the condition. When this happens,
the valid thread blocks itself on its condition until the next
iteration starts (similarly to the “thread killing” version). As
the remaining threads might still be computing their associated
basic operations, process p resets them, by changing a variable
read by every thread. Changing this variable is a lock-free
operation. As a result, invalid threads might execute (a few)
additional operations, very likely overlapped with the end of
the iteration, which includes the stopping criterion calculation.
Threads execute their respective operations on two nested
loops where the outermost loop is executed indefinitely. When
the “stopping” variable changes, threads break the inner-loop,
which is executed again, since the outermost loop is infinite.

III. HARDWARE IMPLEMENTATION

A. RTL Nelder-Mead Implementation

The Nelder-Mead algorithm was implemented on a Xilinx
Virtex-7 FPGA. Every variable (e.g., vertices and intermediate

values used for calculations) is implemented in both the 32
and 64-bit floating point representation defined by the IEEE
754-2008 standard, and all operations are performed using
the embedded FPGA DSP blocks. The system implements
input ports to set initial simplex values and output ports to
display the result, as well as input/output control/status signals,
e.g., start operation, calculation done. In order to maximize
processing speed, the implementation attempted to parallelize
computations as much as possible. Hence, the system is
composed of four execution paths computing concurrently,
in a similar fashion to the speculative execution in software
versions. Common operations to all execution paths at the be-
ginning of each iteration, such as vertex sorting, are executed
by a single module that propagates results to the execution
paths. The evaluation function multiplexes the computation
path’s output that is written back in the simplex registers. A
simplified block diagram of the system is shown in Figure 2.

Fig. 2. Simplified block diagram of the FPGA Nelder-Mead design.

Table I presents the resource utilization rates for every
implemented function. The design does not use BRAMs or
DFFs. DSP blocks, on the other hand, are considerably used,
especially in the 64-bit version, due to the wide number of
64-bit floating point arithmetic operators in the algorithm.

The design was implemented using Xilinx ISE 14.3 for
design and implementation, including mapping, placing and
routing, whereas Xilinx ISIM 14.3 was used for simulation.

Although the hardware designs run at a low frequency (<
3.6 MHz), the system performs one algorithm iteration per
clock cycle, thus yielding very short execution times. The
current operating frequency is due to the large number of

TABLE I
FPGA SYNTHESIS RESULTS. f REPRESENTS FREQUENCY.

Function 1 2 3 4 5 6

32-bit

f (MHz) 3.591 3.582 3.730 2.821 2.380 2.701
Registers <1% <1% <1% <1% <1% <1%
LUTs 4.3% 4.5% 3.3% 9.0% 9.8% 9.6%
IOBs 40.1%
DSPs 28.5% 24.8% 18.1% 27.0% 20.3% 30.7%

64-bit

f (MHz) 2.147 2.148 2.123 1.880 1.398 1.713
Registers <1% <1% <1% <1% <1% <1%
LUTs 13.1% 15.0% 10.8% 16.9% 9.8% 18.4%
IOBs 80.2%
DSPs 87.9% 59.0% 49.4% 87.9% 58.9% 97.5%

floating point arithmetic modules cascaded on the datapath.
Using 64-bit precision also contributes to the low frequency;
However, this design allows fair comparison between hardware
and software implementations since they follow the same
workflow. The 32-bit implementation results in a much more
area-efficient implementation and provides moderate perfor-
mance improvements. The smaller resolution showed equiv-
alent results for five functions, failing only on one function,
where for certain inputs, the difference in resolution yielded
close, different results. Experiments up to date indicate that
32 bit resolution is sufficient for most function optimizations
using Nelder-Mead, thus future work will encompass reducing
resolution in order to further increase performance, including
using alternative encodings for increased throughput [9]. Per-
formance results were obtained through Xilinx’s ISIM timing
(post place and route) simulation.

B. Manual vs automatic hardware generation

The software version of the Nelder-Mead algorithm was
translated to hardware through the Xilinx HLS C-To-RTL
generation tool. This approach presented worse results than
the ad hoc implementation, due to several reasons:

i) The tool unrolls only a few loops. The majority of
computations are implemented as multi-cycle hardware
paths, probably due to the wide number of function calls
on several loops’ iterations.

ii) Albeit the C-To-RTL version yields much higher operat-
ing frequency than the manual implementation, at the cost
of multi-cycle algorithm iterations, this results in no per-
formance increase. This is due to the fact that subsequent
Nelder-Mead iterations cannot be parallelized, therefore
there is no gain from a pipelined implementation. The
higher number of intermediate registers increases the
setup-hold times in the critical path, resulting in an overall
slower execution.

Software versions could be modified to achieve better results
in automatic synthesis, using code re-factoring techniques
encompassing hardware synthesis estimation [10], to be done
as future work.

TABLE II
TESTED FUNCTIONS AND THEIR RESPECTIVE INPUTS.

Function Input Simplex
F1(x, y) = −40000x− 60000y + 5x2 + 10y2 + 10xy S = < (0.99,−0.34), (0.61, 1.39), (1.05,−1.895) >

F2(x, y) = 20000× ((x + 70)2 + (y + 275)2) + y2 + (y + 195)2 S = < (234.55, 8.32), (23.343, 34.33), (0.992, 2.23) >

F3(x, y) = 100(y − x2)2 + (1− x)2 S = < (0.081, 0.912), (92.2, 0.21), (18.11, 0.01) >

F4(x, y) = x× y × 0.7623 +
1

4000
×

∏i=2
i=1 x

2
i −

∑i=2
i=1 cos(xi) S = < (10.23, 0.16), (1.24, 0.7), (0.1, 0.1) >

F5(x, y) = 418.9820× 2−
∑i=2

i=1 xi × sin(
√
|xi|) S = < (2.234, 0.832), (1.118, 304), (1.999, 0.354) >

F6(x, y) = 20 + ((x2 − 10cos(2πx)) + y2 − 10cos(2πy)) S = < (20.667, 340.832), (1.2318, 200), (10.54, 0.7354) >

Sequential version

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.0190.0120.016

0.076
0.104

0.073

1 2 3 4 5 6

Ti
m

e
(s

)

(a) Sequential version

Parallel 'thread killing'

Function

0
1

2
3

4
5

6

3.9553.741
3.3853.4373.324

3.855

1 2 3 4 5 6

Ti
m

e
(s

)

(b) Parallel v. w/ thread killing

Ti
m

e
(s

)

Parallel 'persistent threads'

Function

0
1

2
3

4
5

6

0.4740.5260.5390.3830.481 0.4

1 2 3 4 5 6

(c) Parallel v. w/ persistent threads

Fig. 3. Total runtime, in seconds, for the devised Nelder-Mead CPU versions, for the six presented objective functions.

IV. RESULTS

The developed software versions were tested on a last
generation CPU whereas the hardware versions were simulated
on a last generation FPGA. The characteristics of the tested
platforms are summarized in Table III. Software versions were
compiled with gcc -O3. The execution time was measured
with the OpenMP omp get wtime() flag.

Six hard-to-optimize functions in R2, presented in Table II
and known for having multiple local optima, were chosen as
case studies for benchmarking.

Table II also shows the initial simplices used for each
function. In particular, F3 is known as Rosenbrock’s function,
F4 is a derivative of Griewank’s function, F5 and F6 are
respectively known as Schwefel and Rastringin functions. The
algorithm was limited to one hundred thousand iterations for
every function and every version, both in the CPU and in the
FPGA, the number of iterations taken by every function due
to the strict stooping criterion. The execution times presented
for each trial (optimization of one function) on the CPU is the
mean of five runs, whereas the hardware simulations are 100%
accurate and have not been therefore statistically treated.

A. CPU

The run time of the implemented software versions is shown
in Figures 3(a), 3(b) and 3(c). Both parallel versions are slower
than the sequential one, due to the fork-and-join mechanism’s
overhead: either by creating and destroying threads in the first
version or by thread synchronization in the second version.
Not surprisingly, thread synchronization is more efficient than

TABLE III
TEST PLATFORM SPECIFICATIONS. IC AND DC STAND FOR INSTRUCTION

AND DATA CACHE, RESPECTIVELY.

Device CPU FPGA

Manufacturer Intel Xilinx
Brand Core 5 Ivy Bridge Virtex 7
Model i5-3570K XC7VX485T
Max clock 3.4 GHz 300 MHz
Cores 4 -
System mem 16 Gbytes 68 Mbytes
L1 Cache 32kB iC+dC/core -
L2 Cache 256kB/core unified -
L3 Cache 6MB shared unified -
Year 2012 2012

kill and create threads at each iteration, but it is still slower
than the sequential version.

While trials with functions in R2 show that the overhead of
the speculative execution mechanism kills any speedup, more
complex functions and functions in higher dimensions, will
mitigate the impact of the fork-and-join mechanism, highly
noticeable since calculating the used functions is a very quick
process. CPU versions are optimized, mostly due to -O3 gcc
flag, and have less than 1% of L1 cache misses, as reported
by Cachegrind, since the simplex data structures fit on cache.

B. FPGA

Figure 4 shows the results of the FPGA, both for the C-to-
RTL version, in 4(a), and for the handwritten design in 4(b).
The latter was implemented with Verilog, according to the
description in Section III.

C−to−RTL Virtex 7

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.1030.1030.1030.1030.1030.103

1 2 3 4 5 6

Ti
m

e
(s

)

(a) C-to-RTL version

Virtex 7 Design Simulation

Function

0.
0

0.
1

0.
2

0.
3

0.
4

0.0470.0470.0470.0530.0720.058

1 2 3 4 5 6

Ti
m

e
(s

)

(b) Verilog simulation

Fig. 4. Total runtime, in seconds, both for a C-to-RTL version and a 64-bit
Verilog simulation of Nelder-Mead.

As shown in Figures 3 and 4, the FPGA implementation
is more and less efficient than the equivalent software im-
plementation, depending on the tested function. However, the
FPGA runs at a considerably lower clock frequency (average
of 1.9MHz of FPGA vs. 3.4GHz of the CPU). As the design
replicates the parallel software versions, one can also conclude
that the FPGA performance is not affected by synchronization
issues, which are guaranteed by the used frequency.

V. RELATED WORK

A parallel version of the Nelder-Mead algorithm was pro-
posed earlier, using parallelization at the parameter level [11].
However, the parallel version has a different search path
though the parameter space than the non-parallel algorithm,
in contrast to this paper. Moreover, the approach relies on
even finer grained parallelism than the presented approach,
thus likely unsuited for multi-core CPU-chips.

Both Nelder-Mead and Powell’s methods were globalized
and parallelized on a distributed memory environment with
six single-core Pentium 4 machines running at 2.8 GHz,
following a server-client fashion [12]. This paper, on the
other hand, proposes parallel shared-memory and hardware
implementations. A method for concurrent execution of the
algorithm has also been proposed [13], with better results
than the Nelder-Mead original algorithm on smooth, noisy,
and functions with many local minima. This paper is rather
focused on the original algorithm than on variants of it.

VI. CONCLUSIONS

This paper introduced a novel parallelization of the Nelder-
Mead algorithm, to work on shared-memory multi-core CPU-
chips. It is based on speculatively executing the operations
to apply to the simplex, overlapping them with the RVT
calculation to boost performance, by raising resource usage.

Trials with a 2D implementation of these versions, running
on a quad-core CPU-chip, showed that even though speculative
execution is applicable, performance is degraded due to (i)
thread creation, destruction and synchronization costs to man-
age the fork-and-join mechanism that maintains the speculative
execution and (ii) small computation overlap between the RVT
and decision paths. As a result, this approach is not profitable,
unless the objective functions take more time to compute, thus
reducing the relative communication overhead.

Re-configurable logic has shown to deliver similar perfor-
mance to the CPU, but at a much lower clock frequency. The
FPGA design also calculates all the four decision paths in
parallel, but the execution time is as long as the longest path.
This suggests that synchronization for fork-and-join mecha-
nisms would be considerably more efficient if implemented
by hardware. The results of a C-to-RTL version showed
that automatic conversion is less efficient for this particular
algorithm, especially due to the low resource utilization, a
common handicap of automatic synthesis.

The performance of both devices is strictly related with the
characteristics of the performed trials. FPGA designs benefit
from the use of both simple objective functions and small
dimensions. While complex objective functions would favor
the CPU’s parallel proposed variant, due to bigger computation
overlaps between the RVT and basic operations, higher simplex
dimensions would require more area in the FPGA, already
at ≈90% utilization rates for DSPs, in some cases. At some
point, area would be completely used and performance would
be decreased. Benchmarks of both more complex objective
functions and higher simplex dimensions are scheduled for
future work, as well as the assessment of other methods to
parallelize the algorithm by software.

REFERENCES

[1] T. Weise, Global Optimization Algorithms - Theory and Application,
2nd ed. Self published, May, 2009.

[2] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct Search Methods:
Then And Now,” Journal of Computational and Applied Mathematics,
vol. 124, pp. 191–207, 2000.

[3] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential Applica-
tion of Simplex Designs in Optimization and Evolutionary Operation,”
Technometrics, vol. 4, pp. 441–461, 1962.

[4] M. J. D. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,” The
Computer Journal, vol. 7, no. 2, pp. 155–162, January 1964.

[5] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, January 1965.

[6] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,” SIAM
Review, vol. 45, pp. 385–482, 2003.

[7] M. J. D. Powell, “Direct Search Algorithms for Optimization Calcula-
tions,” Acta Numerica, vol. 7, pp. 287–336, 1998.

[8] H. K. Pyla, C. Ribbens, and S. Varadarajan, “Exploiting coarse-grain
speculative parallelism,” in Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and
applications, ser. OOPSLA ’11. New York, NY, USA: ACM, 2011,
pp. 555–574.

[9] F. de Dinechin, M. Joldes, B. Pasca, and G. Revy, “Multiplicative
square root algorithms for fpgas,” in Field Programmable Logic and
Applications (FPL) 2010, 2010, pp. 574–577.

[10] A. Cilardo, P. Durante, C. Lofiego, and A. Mazzeo, “Early prediction of
hardware complexity in hll-to-hdl translation,” in Field Programmable
Logic and Applications (FPL), 2010 International Conference on, 2010,
pp. 483–488.

[11] D. Lee and M. Wiswall, “A Parallel Implementation of the Simplex
Function Minimization Routine,” Comput. Econ., vol. 30, no. 2, pp.
171–187, September 2007.

[12] A. Koscianski and M. A. Luersen, “Globalization and Parallelization
of Nelder-Mead and Powell Optimization Methods,” Innovations and
Advanced Techniques in Systems, Computing Sciences and Software
Engineering, pp. 93–98, 2008.

[13] A. Lewis, D. Abramson, and T. Peachey, “RSCS: a parallel simplex
algorithm for the Nimrod/O optimization toolset,” in Third International
Symposium on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks, 2004, July 2004, pp. 71–78.

