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Abstract. Lenses are one the most popular approaches to define bidi-
rectional transformations between data models. A bidirectional transfor-
mation with view-update, denoted a lens, encompasses the definition of
a forward transformation projecting concrete models into abstract views,
together with a backward transformation instructing how to translate an
abstract view to an update over concrete models. In this paper we show
that most of the standard point-free combinators can be lifted to lenses
with suitable backward semantics, allowing us to use the point-free style
to define powerful bidirectional transformations by composition. We also
demonstrate how to define generic lenses over arbitrary inductive data
types by lifting standard recursion patterns, like folds or unfolds. To ex-
emplify the power of this approach, we “lensify” some standard functions
over naturals and lists, which are tricky to define directly “by-hand” us-
ing explicit recursion.
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1 Introduction

With the ever growing list of programming languages and application develop-
ment frameworks, transforming a data format into a different format is essential
to “bridge the gap” between technology layers and ensure sharing of information
among software applications. Moreover, users generally expect transformations
to be bidirectional, in the sense that changes made to one of the models can
be safely propagated to its connected pair (imagine the synchronization of a
laptop’s and a cellphone’s contact list).

The naive way to create a bidirectional transformation is to engineer two
unidirectional transformations together and manually prove that they are some-
how consistent. This is likely to cause a maintenance problem, besides being a
notoriously expensive and error-prone task. Any change in a data format implies
a redefinition of both transformations, and a new consistency proof.

A better approach is to design a domain-specific language in which one ex-
pression denotes both transformations, which are then guaranteed to be con-
sistent by construction in the respective semantic space. Following this notion,
approaches to bidirectional transformations have emerged in the most diverse
computing domains, including heterogeneous data synchronization [15, 6], soft-
ware model transformation [26], schema evolution [9, 4], constraint maintenance
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for graphical user interfaces [21], interactive structure editing [19] and relational
databases [7]. By restricting the domain-specific language to particular domains,
these approaches overcome the difficulty of designing bidirectional transforma-
tions, and achieve a neat balance between expressiveness and the robustness
imposed by the consistency constraints.

One of the most successful approaches to bidirectional transformations are
the so-called lenses, proposed by Foster et al [15] to solve the classical view-
update problem originating from database theory [3]: when a concrete data model
is abstracted into a view, how can changes made to the view be propagated back
as updates to the original model? According to the following diagram, a lens
comprises the definition of three functions involving a concrete data model C
and its abstract counterpart A:

C

get

((Q A

create

hh

A× Cput

WW

π1

GG

The first ingredient of a lens consists of the definition of a view: function get :
C → A abstracts away details from the concrete model that are irrelevant for a
specific purpose. Since this abstraction implies loss of information, the backwards
transformation put : A × C → C is augmented with knowledge of the original
concrete instance, rendering it capable to restore some information no longer
present in the view. As this is not always possible, a default concrete model is
sometimes reconstructed by applying create : A→ C to the view.

Of course, these three functions should be somehow consistent in order to
define a well-behaved lens. First, get must be an abstraction function, i.e, A shall
contain at most as much information as C . In a sense, a lens is a dual concept
of refinement [23, 25]. Second, the lens should be acceptable, i.e, updates to a
view cannot be ignored and must be translated exactly. Finally, the lens should
be stable, i.e, if the view does not change, then neither should the source. These
properties will be formally defined in the next section.

As an example, let’s consider as a concrete data model lists of natural num-
bers. A possible lens over this data type is determined by the length of the list.
In Haskell we could define the get function trivially as follows:

data Nat = Zero | Succ Nat

get :: [Nat ]→ Nat
get [ ] = Zero
get (x : xs) = Succ (get xs)

Given a natural number, create must generate a default list of that length:

create :: Nat → [Nat ]
create Zero = [ ]
create (Succ n) = Zero : create n
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For the lens to be well-behaved, create could use other defaults but cannot create
a list with a different length. The put function is a bit more tricky. A possible
definition that guarantees well-behavedness is:

put :: (Nat , [Nat ])→ [Nat ]
put (Zero, ) = [ ]
put (Succ n, [ ]) = Zero : put (n, create n)
put (Succ n, x : xs) = x : put (n, xs)

If the view (i.e, the length of the list) remains the same or decreases, elements of
the original list must be used in the new concrete value. If the length increases,
defaults are invented for the new elements.

For more complex data formats and abstractions, the definition of a put
function that guarantees well-behavedness becomes highly complex. As such,
Foster et al [15] propose a combinatorial approach to the definition of lenses
over generalized trees: complex lenses are defined by composition of more sim-
pler lenses using a standard set of combinators and recursion. This combinatorial
approach is also central to the so-called point-free style of programming, popu-
larized by John Backus in his 1977 Turing award lecture [2]. In this variable-free
style, functions are defined by composition using a standard set of higher-order
combinators, characterized by a rich set of algebraic laws that make this style
particularly amenable for program calculation.

In this paper we explore precisely this connection and develop a library of
point-free lens combinators. In the next section, we establish that most of the
standard point-free combinators define well-behaved lenses. This opens inter-
esting perspectives towards a lens calculus, with practical applications for the
optimization of complex lenses defined by composition. In the point-free style of
programming, general recursion is usually deterred in favor of more calculation-
friendly recursion patterns. In Section 3 we show how to define generic lenses
over arbitrary inductive data types by lifting standard recursion patterns, namely
folds and unfolds. In principle, this makes it simpler to establish that a lens is
well-behaved, when compared to the general recursion approach followed by Fos-
ter et al [15], where non-trivial conditions must be proved every time a lens is
defined by recursion. In Section 4 we discuss some relevant related work, and we
conclude in Section 5 with a synthesis of the main contributions and pointers
for future work.

2 Point-free Combinators as Lenses

The rather standard set of point-free combinators that we will use in this paper
is shown in Figure 1. Although we give our examples in Haskell, the semantic
domain will be the Set category, where objects are sets (types) and arrows
are total functions. The most fundamental combinators are the composition of
f : B → C after g : A→ B , denoted by f ◦ g : A→ C , and the identity function,
denoted by id : A → A. The projections π1 : A × B → A and π2 : A × B → B
project out the left and right components of a pair, respectively, and the split
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id : A→ A
◦ : (B → C )→ (A→ B)→ (A→ C )
π1 : A × B → A
π2 : A × B → B
4 :: (A→ B)→ (A→ C )→ (A→ B × C )
× : (A→ B)→ (C → D)→ (A × C → B × D)
i1 : A→ A + B
i2 : B → A + B
∇ : (A→ C )→ (B → C )→ (A + B → C )
+ : (A→ B)→ (C → D)→ (A + C → B + D)
! : A→ 1
· : B → (A→ B)

Fig. 1. Point-free combinators.

combinator f 4 g :A→ B × C builds a pair by applying f :A→ B and g :A→ C
to the same input value. The derived product combinator f × g :A × C → B × D
applies f : A→ B and g : C → D to the left and right elements, respectively, of
the input pair in order to build a new pair. The injections i1 : A → A + B and
i2 :B → A+B build left and right alternatives of a disjoint sum, respectively, and
the either combinator f ∇ g : A + B → C applies f : A→ C if the input is a left
alternative or g :B → C otherwise. The derived sum combinator f +g :A+C →
B + D uses f : A → B to build a left alternative from a left alternative or
g : C → D otherwise. The bang combinator ! : A→ 1 returns the single element
of the terminal object, and, given a constant b : B , b always returns b. Some
of the laws governing these combinators are presented in Appendix A, and can
easily be derived from their uniqueness laws. For more information on point-free
program calculation in general see [5, 17, 22, 11].

Using these combinators, we can give a precise point-free characterization of
well-behaved lenses.

Definition 1 (Lens). A well-behaved lens l , denoted by l : C Q A, is a bidi-
rectional transformation that comprises three total functions get : C → A, put :
A × C → C and create : A→ C , satisfying the following properties:

get ◦ create = id CreateGet

get ◦ put = π1 PutGet

put ◦ (get4 id) = id GetPut

Property CreateGet [6] guarantees that the lens is an abstraction, ensuring
that get is a surjection and create an injection. PutGet and GetPut [15]
guarantee that the lens is acceptable and stable, respectively.

We will now show how to lift most of the point-free combinators of Figure 1 to
lenses. To avoid introducing new notation, we will denote the lens corresponding
to a particular combinator using the same syntax. From the context it should
be clear if we are referring to the lens or the point-free combinator. For some
lenses there is some freedom in the design of backwards transformations (namely,
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create and put). As such, they can receive extra parameters to plugin in contexts
were such freedom exists.

The simplest cases of bidirectional transformations are isomorphisms. Given
a bijective function f : A → B with inverse f −1 : B → A, there exists a lens
f : A Q B with:

get = f
put = f −1 ◦ π1
create = f −1

A primitive combinator that falls under this category is the identity function
id : A Q A. Similarly, all usual isomorphisms involving sums and products are
lenses. Here are some that we will use throughout the paper:

swap : A × B Q B × A
assocr : (A × B) × C Q A × (B × C )
assocl : (A × (B × C )) Q ((A × B) × C )
coassocl : A + (B + C ) Q (A + B) + C
distr : A × (B + C ) Q (A × B) + (A × C )
distl : (A + B) × C Q (A × C ) + (B × C )

One of the most important properties of lenses is composability. In point-free,
the composition of two lenses, first defined in [15], can be restated as follows:

∀f : B Q A, g : C Q B . (f ◦ g) : C Q A
get = getf ◦ getg
put = putg ◦ (putf ◦ (id × getg)4π2)
create = createg ◦ createf

If the concrete domain of f and the abstract domain of g have the same type,
then f and g are composable and f ◦ g is a lens with the concrete domain of g
and the abstract domain of f . In the get and create directions, the composed
transformation is just the composition of the respective transformations from f
and g . In the put direction, in order to apply the put functions in sequence, the
original concrete value is duplicated. Note that, while putg consumes the original
concrete value with type C , the concrete value passed to putf , with type B , is
calculated by applying the function getg to the original concrete value.

The projections π1 and π2 will be the main ingredients in defining more
complex lenses that project away components of a concrete data type:

∀b ∈ B . π1
b : A × B Q A

get = π1
put = id ×π2
create = id 4 b

∀a ∈ A. π2
a : A × B Q B

get = π2
put = swap ◦ (id ×π1)
create = a4 id

Since π1 and π2 project the corresponding elements of the product, the back-
ward transformations have to reconstruct the projected out elements. In create,
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a default value is inserted for the “lost” value of the pair, while put copies it from
the original pair. Therefore, the derived lenses accept additional parameters (the
constants a and b), represented using superscript.

In general, the split of two lenses f : C Q A and g : C Q B sharing the same
domain is not a well-behaved lens f 4 g : C Q A × B . For example, the dupli-
cation combinator id 4 id : A Q A × A would be a valid lens iff the invariant
π1 = π2 was imposed on the codomain A × A, stating that both components
of the pair are always equal. However, if f and g project distinct concrete in-
formation from C then it is possible to define a well-behaved lens. An example
of such a lens is the swap isomorphism π24π1 : A × B Q B × A. When this
non-interference between f and g exists, updates to the view can be propagated
back to the concrete model by independent inspection of both components of
the pair. In practice this means that, when defining put : (A × B) × C → C
the order of application of putf : A × C → C and putg : B × C → C should
be irrelevant. Formally, this non-interference condition can be expressed by the
following equality:

putf ◦ (id × putg) ◦ assocr = putg ◦ (id × putf ) ◦ assocr ◦ (swap× id)

Given a split f 4 g where this non-interference condition is valid, it should be
possible to lift it into a well-behaved lens by defining put as any of the above
expressions (for example, putf ◦ (id × putg) ◦ assocr). Unfortunately, we are un-
aware of a general definition for create that obeys the CreateGet law, which
prevents us from giving a generic definition of split as a well-behaved lens. For
swap it is rather easy to show that the non-interference condition is valid, that
the suggested definition for put is equal to the expected swap ◦ π1 (according to
the previous generic definition of a bijection as a well-behaved lens), and that
create can be done using swap itself.

Another instance of split that satisfies the non-interference condition is the
product combinator f × g = f ◦ π14 g ◦ π2. Again, it is easy to show that any
of the above alternative definitions for put is equivalent to (putf × putg) ◦ distp,
where distp is the isomorphism given by:

distp : (C × D) × (A × B)→ (C × A) × (D × B)

distp = (π1×π1)4 (π2×π2) Distp-Def

For this particular split, creating a concrete value from an abstract one can be
done by independently creating both components of the pair, leading to the
following definition:

∀f : C Q A, g : D Q B . f × g : C × D Q A × B
get = getf × getg
put = (putf × putg) ◦ distp
create = createf × createg

In practice, most expressions involving split that satisfy non-interference can be
transformed into point-free expressions using other valid lens product combina-
tors and isomorphisms (like × or swap).
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Moving to sums, we have two alternative ways to generically lift the either
combinator into a well-behaved lens:

∀f : A→ C , g : B → C . f •∇ g : A + B Q C
get = getf ∇ getg
put = (putf + putg) ◦ distr
create = i1 ◦ createf

∀f : A→ C , g : B → C . f ∇• g : A + B Q C
get = getf ∇ getg
put = (putf + putg) ◦ distr
create = i2 ◦ createg

When putting back, putf is used if the concrete value is a left alternative and
putg otherwise. For create we have two alternatives – either output a left or
a right alternative – originating left-biased (•∇) and right-biased (∇•) versions
of this lens. Assuming that predicates are represented using sums (for example,
using p :A→ A+A instead of p :A→ Bool), this lens corresponds to a point-free
formulation of the concrete conditional combinator ccond from [15].

The sum injections i1 : A → A + B and i2 : B → A + B are non-surjective
functions and classic examples of refinements [9]. The only way to lift them into
lenses would be by imposing an invariant on the codomain A + B , constraining
its values to be all left or all right alternatives, respectively. Since this seman-
tic constraint is not supported by standard type systems, unrestricted usage
of the injections will be disallowed for well-behaved lenses. Notwithstanding, if
injections are used inside an expression that is jointly surjective, they can some-
times build up well-behaved lenses. Two particular useful cases are the lenses
i1∇ f : A + C Q A + B and f ∇ i2 : C + B Q A + B , where f : C → A + B is
any lens. Notice that these eithers are necessarily surjective because f , being a
well-behaved lens, is already surjective. For example, the first lens can be defined
as follows:

∀f : C Q A + B . i1∇ f : A + C Q A + B
get = i1∇ getf
put = ((id + createf ◦ i2) ◦ π1∇ i2 ◦ putf ) ◦ distr
create = id + createf ◦ i2

For the sum combinator we can have the following lifting into a lens:

∀f : C Q A, g : D Q B . f + g : C + D Q A + B
get = getf + getg
put = (putf ∇ createf ◦ π1 + createg ◦ π1∇ putg) ◦ dists
create = createf + createg

where dists is the following distribution combinator over sums:

dists : (A + B) × (C + D)→ (A × C + A × D) + (B × C + B × D)

dists = (distr + distr) ◦ distl Dists-Def
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In the definition of put , dists is first used to span the four possible cases. If the
abstract and concrete values match (cases A × C and B × D), then putf and
putg are applied as expected. Otherwise (cases A × D and B × C ), we ignore the
“out of sync” concrete values and use createf and createg to generate concrete
values of the correct type. The definition of create is trivial and is merely the
sum of the create functions of f and g . This sum combinator is essentially the
point-free homologous of the abstract conditional combinator acond from [15].

Actually, + can be lifted into a well-behaved lens in many different ways.
Another alternative is the following, for arbitrary functions h : A × D → C and
i : B × C → D , although the first definition gives more natural results in most
cases and will be used by default:

∀f : C Q A, g : D Q B . (f + g)h,i : C + D Q A + B
get = getf + getg
put = (putf + putg) ◦ (id ∇ (π14 h) + (π14 i)∇ id) ◦ dists
create = createf + createg

As with projections, in order to lift ! :C → 1 into a lens, a default value must
be provided to be returned by the create function. The definition is trivial:

∀c ∈ C . !c : C Q 1
get = !
put = π2
create = c

Likewise to sum injections, the constant combinator · : B → (A → B), that
given a value b ∈ B returns b for all input values, cannot be lifted into a well-
behaved lens unless an invariant is imposed on the abstract type stating that all
its values are equal to b. Again, there exist particular expressions in which this
combinator forms a well-behaved lens, such as b∇ f : A + C Q B or f ∇ b : C +
A Q B , where f : C Q B is any other well-behaved lens.

3 Recursion Patterns as Lenses

In this section, we investigate recursive lenses over inductive data types. Most
user defined data types can be defined as the fixpoint of a polynomial functor.
Given a base functor F , the inductive type generated by its least fixpoint will be
denoted by µF . A polynomial functor is either the identity functor Id (denoting
recursive invocation), the constant functor A or the lifting of the sum ⊕ and
product bifunctors ⊗. For example, for lists we have [A ] = µLA, where LA =
1⊕A⊗ Id , and for naturals Nat = µN , where N = 1⊕ Id . Associated with
each data type µF we also have two unique functions inF : F µF → µF and
outF : µF → F µF , that are each other’s inverse. They allow us to encode and
inspect values of the given type, respectively. The application of out to a type
results on a one-level unfolding to a sum-of-products representation capable of
being processed with point-free combinators.
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Given a functor F and a function f : A → B , the functor mapping F f :
F A → F B is a function that preserves the functorial structure and modifies
all the instances of the type argument A into instances of type B . It can be
defined inductively on the functor F , such that the argument f is applied to the
recursive occurrences inside the sums-of-products structure and constants are
left unchanged:

F f : F A→ F B
Id f = f
T f = id
(F ⊗G) f = F f ×G f
(F ⊕G) f = F f + G f

On the other side, a natural transformation η between functors F and G ,
denoted by η :F →̇ G , is a function that transforms instances of F into instances
of G while preserving the inner instances of the polymorphic type argument. It
assigns to each type A an arrow ηA : F A → G A such that, for any function
f : A→ B , the following naturality condition holds:

G f ◦ ηA = ηB ◦ F f Nat-Swap

Instead of defining lenses by general recursion, we resort to well-known recursion
patterns, and use their powerful algebraic laws (see Appendix A) to prove that
the resulting lenses are well-behaved. The most fundamental combinator is the
fold or catamorphism that encodes the recursion pattern of iteration. Given an
algebra g : F A → A, the catamorphism ([g ])F : µF → A is the unique function
that makes the hereunder diagram commute:

µF

([g])F
��

outF // F µF

F ([g])F
��

A F Ag
oo

A catamorphism recursively consumes a data type µF by replacing its construc-
tors with the given algebra g . A well-known example is the length : [A ] → Nat
function presented in the introduction, that can be defined as the following cata-
morphism:

length = ([inN ◦ (id +π2)])LA

Another example of a catamorphism is the function filter left : [A+B ]→ [A ]
that filters all the left alternatives from a list of optional elements:

filter left :: [Either a b ]→ [a ]
filter left [ ] = [ ]
filter left (Left x : xs) = x : filter left xs
filter left (Right x : xs) = filter left xs
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Using the basic isomorphisms presented before, it is not difficult to put together
a point-free algebra with the intended behaviour:

filter left = ([(inLA ∇π2) ◦ coassocl ◦ (id + distl)])LA+B

The dual recursion pattern of catamorphism is the unfold or anamorphism.
Given a coalgebra h : A→ F A, the anamorphism bd(h)ceF : A→ νF is a function
that, given an element of A, builds a (possibly infinite) element of the coinductive
datatype νF (the greatest fixpoint of F ). The coalgebra h is used to decide
when generation stops and, in case it proceeds, which “seeds” should be used
to generate the recursive occurrences of νF . Here we will only be interested
in a specific kind of unfolds, namely those that always terminate. Not only we
want all our lenses to terminate, but we also want to be able to freely compose
them with catamorphisms - this composition is not always well-defined because
anamorphisms can generate infinite values that are not part of the least fixed
point consumed by catamorphisms. If we restrict ourselves to recursive [8] (or
reductive [1]) coalgebras, the resulting morphism (to be denoted by recursive
anamorphism) is guaranteed to halt in finitely many steps. A recursive coalgebra
h : A → F A is essentially one that guarantees that all As contained in the
resulting F A are somehow smaller than its input. Capretta et al [8] give a
nice formal definition and provide a set of constructions for building recursive
coalgebras out of simpler ones. Since outF : µF → F µF is a final recursive
coalgebra, we can safely compose catamorphisms with recursive anamorphisms.
Given a recursive coalgebra h :A→ F A, the recursive anamorphism [bd(h)ce]F :A→
µF is the unique function that makes the hereunder diagram commute:

µF F µF
inFoo

A

[bd(h)ce]F

OO

h
// F A

F [bd(h)ce]F

OO

Given this uniqueness property, the recursive anamorphism obeys the same laws
as the normal anamorphism, namely fusion. A trivial example of a recursive
anamorphism to naturals is again the length function:

length = [bd((id +π2) ◦ outLA)ce]N

Notice that id +π2 :LA →̇ N and that a composition of a natural transformation
with a recursive coalgebra is again a recursive coalgebra [8, Proposition 3.9], so
this is clearly a recursive anamorphism. In fact, every catamorphism ([inG ◦ η])F ,
where η : F →̇ G is a natural transformation can also be defined by a recursive
anamorphism [bd(η ◦ outF )ce]G , and vice-versa. A classical example of a recursive
anamorphism that cannot be defined using a catamorphism is the function zip :
[A ] × [B ]→ [A × B ], that zips two lists together into a list of pairs:
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zip :: ([a ], [b ])→ [(a, b)]
zip (x : xs, y : ys) = (x , y) : zip (xs, ys)
zip = [ ]

In the point-free style it can be redefined as follows:

zip = [bd((! + distp) ◦ coassocl ◦ dists ◦ (outLA × outLB ))ce]LA × B

The coalgebra guarantees that the output list stops being generated when at
least one of the inputs is empty. Otherwise, both tails are used as “seed” to
recursively generate the tail of the output list.

The composition of a catamorphism after an anamorphism is known as hylo-
morphism, but as mentioned above, this composition is not always well-defined
in Set. Here, we will be interested in hylomorphisms that are guaranteed to
terminate, namely those where the cata is composed with a recursive anamor-
phism:

[[[g , h]]]F = ([g ])F ◦ [bd(h)ce]F Hylo-Split

These recursive hylomorphisms (the unique coalgebra-to-algebra morphisms of
[8]) are quite amenable to program calculation because they enjoy a uniqueness
law similar to the other recursion patterns:

[[[g , h]]]F = f ⇔ g ◦ F f ◦ h = f Hylo-Uniq

3.1 Functor mapping

We can lift functor mapping into a lens combinator by applying regular functor
mapping to each component of a lens, as follows:

∀f : C Q A. F f : F C Q F A
get = F getf
put = F putf ◦ fzipF createf
create = F createf

The interesting snippet is the fzipF combinator, responsible for zipping abstract
and concrete instances of the same F -structure, and that is defined below:

fzipF : (A→ C )→ F A × F C → F (A × C )
fzipId f = id
fzipT f = π1
fzip(F ⊗G) f = (fzipF f × fzipG f ) ◦ distp

fzip(F ⊕G) f = (fzipF f ∇F (id 4 f ) ◦ π1 + G (id 4 f ) ◦ π1∇ fzipG f ) ◦ dists

As usual, fzip gives preference to the values from the abstract data type. In the
case of sums (similarly to the definition of the + lens), fzip is applied recursively
to the sub-functors F and G , and whenever the abstract and concrete values
are “out of sync”, the abstract value is preserved and a new concrete value is
created from the abstract value, by invoking the argument function.
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We can polytypically prove (in the style of [18]) the following laws about fzip:

F π1 ◦ fzipF f = π1 Fzip-Cancel

fzipF f ◦ (F g4F h) = F (g4 h) Fzip-Split

The first states that fzipF cannot modify the shape of the abstract type, nor the
data contained in it. The second states that zipping two “in sync” values can be
trivially done just by mapping. The proof of the first property can be found in
Appendix B. The other proof is similar and is omitted.

3.2 Anamorphism

At this point, we have enough ingredients to “lensify” anamorphisms. For the
resulting lens to be well-behaved, the coalgebra must be recursive and itself a
well-behaved lens. The generic definition is as follows:

∀f : A Q G A. [bd(f )ce]G : A Q µG
get = [bd(getf )ce]G
put = [[[putf , fzipG create ◦ (outG × getf )4π2]]]G ⊗A

create = ([createf ])G

Knowing that createf is an algebra with type G A → A, create is trivially
defined using a catamorphism. The generic definition of put uses an accumulation
technique implemented as a recursive hylomorphism: it proceeds inductively over
the abstract value, using the concrete value as an accumulator. The function that
propagates the accumulator to recursive calls is fzipG create◦(outG × getf ). The
diagram for this hylomorphism is the following:

µG × A

put

��

outG× getf //
4
π2

33
G µG × G A

fzipG create // G (µG × A) × A

G put × id

��
A G A × A

putf
oo

The proof that this lens is well-behaved is given in Appendix B. The proof
of laws CreateGet and PutGet can be done using the fusion law for anamor-
phisms. The proof of law GetPut uses hylomorphism fusion and Hylo-Uniq.

By applying this definition to the zip function, we get the expected defini-
tions for create and put . For better understanding, we present them using Haskell
syntax and explicit recursion (easily derivable from the original point-free defi-
nition):

create :: [(a, b)]→ ([a ], [b ])
create [ ] = ([ ], [ ])
create ((x , y) : t) = let (xs, ys) = create t in (x : xs, y : ys)
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put :: ([(a, b)], ([a ], [b ]))→ ([a ], [b ])
put ([ ], ([ ], r)) = ([ ], r)
put ([ ], (l , [ ])) = (l , [ ])
put ((x , y) : t , ( : l , : r)) = let (xs, ys) = put (t , (l , r)) in (x : xs, y : ys)
put (l , ) = create l

The create induced by this lens is just the unzip function, a fold that recursively
splits a list of pairs into two lists. The put has a more intricate behaviour: it only
recovers elements of one of the original concrete lists when the updated abstract
list is smaller than it but with the exact same length of the other concrete list.
This guarantees that zipping the result again yields the same view. For example,
put ([(1, 2), (3, 4)], ([4, 5], [6, 7, 8, 9])) returns ([1, 3], [2, 4, 8, 9]). Notice how the
elements 8 and 9 of the bigger list are recovered.

3.3 Catamorphism

Catamorphisms can be lifted to well-behaved lenses as follows:

∀f : F A Q A. ([f ])F : µF Q A
get = ([getf ])F
put = [bd(fzipF create ◦ (putf ◦ (id ×G get)4π2) ◦ (id × outF ))ce]F
create = [bd(createf )ce]F

Notice how put , encoded as an anamorphism, still gives preference to abstract
values by using fzip, as depicted in the following diagram:

µF F µF
inFoo

A × µF

put

OO

id × outF
// A × F µF

id ×F get
//

4
π2

))
A × F A

putf
// F A × F µF

fzipF create
// F (A × µF )

F put

OO

To prove that ([f ]) is a well-behaved lens, we must prove that both put and create
are recursive anamorphisms. Given these conditions, the proof is very similar to
the proof for anamorphisms and is omitted.

The filter left function, using the left-biased version of the either combinator,
is an example of a fold lens where it is not difficult to prove that both the create
and put are indeed recursive. Its corresponding create is a simple unfold that
maps a list into a list of left alternatives:

create :: [a ]→ [Either a b ]
create [ ] = [ ]
create (x : xs) = Left x : create xs

The put function restores right alternatives from the original concrete list:
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put :: ([a ], [Either a b ])→ [Either a b ]
put (xs,Right y : ys) = Right y : put (xs, ys)
put ([ ], ) = [ ]
put (x : xs, [ ]) = Left x : put (xs, create xs)
put (x : xs,Left y : ys) = Left x : put (xs, ys)

For an example of a catamorphism lens whose create function is not recursive,
just replace the left-biased either combinator by the right-biased version in the
point-free definition presented above. This change yields the following reshaping
of create, assuming b to be the default constant that parameterizes π2:

create :: [a ]→ [Either a b ]
create xs = Right b : create xs

3.4 Natural transformations

A special case of the previous lenses occurs when the forward transformation is
both expressible as a catamorphism and an anamorphism with the same natural
transformation in the recursive gene. We name a lens f describing a bidirectional
natural transformation between functors F and G a natural lens and type it with
the signature f :F Q̇ G , where get :F →̇ G , put :G ⊗F →̇ F and create :G →̇ F .
Unlike the previous cases, where we still have to check that the coalgebras are
recursive, given a natural lens η : F Q̇ G , both ([inG ◦ η])F and [bd(η ◦ outF )ce]G
immediately determine well-behaved lenses between µF and µG because, as
mentioned before, termination is guaranteed.

There are several examples of these lenses. As seen before, the length function
is a well-known example that can be expressed either as a catamorphism on lists
or an anamorphism to naturals. Instantiating the input type to lists of naturals
and the default constant that parameterizes π2 to Zero, the forward and back-
ward functions induced by this lens are exactly the same as the ones presented in
the introduction. Another lens that establishes a natural transformation between
base functors is mapping over lists:

∀f : C Q A. map f = ([inLA
◦ (id + f × id)])LC

: [C ] Q [A ]

This definition can be generalized for any parametric type D defined induc-
tively over a bifunctor B :

∀f : C Q A. gmap f = ([inB A ◦ B f id ])B C : D C Q D A

3.5 Hylomorphisms

It is well known that most recursive functions can be encoded using hylomor-
phisms over polynomial functors. Given that Hylo-Split allows us to factorize
a hylomorphism into the composition of a catamorphism after an anamorphism,
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the range of recursive functions that we can lift to well-behaved lenses is con-
siderably enlarged. Of course the algebras and coalgebras of the hylomorphism
must themselves be lenses (for example, built using the combinators presented
in Section 2), and the coalgebras must be recursive.

Take as an example the natural number addition function plus :Nat × Nat →
Nat :

plus :: (Nat ,Nat)→ Nat
plus (Zero,m) = m
plus (Succ n,m) = Succ (plus (n,m))

Although it is not a fold neither an unfold, it can be defined as the following
hylomorphism, where both the algebra and the recursive coalgebra are lenses:

plus = [[[inN ◦ (outN ∇ i2), (π2 + id) ◦ distl ◦ (outN × id)]]]Nat ⊕ Id

In order to lift this function into a well-behaved lens, the create and put
functions should guarantee that the sum of the generated pair of numbers equals
the abstract value. The create automatically induced by the techniques presented
above simply creates a pair with the abstract value and a Zero as the second
element:

create :: Nat → (Nat ,Nat)
create n = (n,Zero)

As usual, the induced put function is a bit more tricky: if the abstract value
is greater than the first element of the concrete pair, that element is preserved
and the second element becomes the difference between both; if the abstract
value is smaller it just pairs, it with zero likewise to create:

put :: (Nat , (Nat ,Nat))→ (Nat ,Nat)
put (Zero, ) = (Zero,Zero)
put (n, (Zero, o)) = let (a, b) = create n in (b, a)
put (Succ n, (Succ m, o)) = let (a, b) = put (n, (m, o)) in (Succ a, b)

4 Related Work

Our point-free framework can be seen as a domain-specific language similar to
the language for lenses over trees first developed by Foster et al [15]. While
our generic combinators rely on the sum-of-products representation of inductive
types, they represent all recursive types as generalized trees. They also devise a
complex set-based type system with invariants to precisely define the domains
for which their combinators are well-behaved. Using such semantic types [16],
they are able to define well-behaved lenses like c, for an arbitrary constant c.
We rely in a syntactic and more standard (and decidable) type system that is
implemented in functional programming languages like Haskell or ML, with the
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counterpart that we have a more limited set of well-behaved lenses. Additionally,
we identify precise termination conditions to verify in order to guarantee that
recursive lenses like folds and unfolds constitute well-behaved lenses. We believe
that using the techniques presented in [1, 8] these conditions are easier to verify
than the conditions stated in [15] concerning general recursion.

On a more algebraic tone, researchers from the University of Tokyo have
studied the automatic inversion of forward transformations defined in a point-free
language of injective functions, to be used in a structure XML editor supporting
views [24]. The idea is to move the burden of information preservation from put
to get as to make put :A→ C stateless and get :C → A injective. In practice this
setting resembles that of data refinement, as attested by the required put ◦get =
id property. In order to deal with duplication and structural changes, editing
tags are introduced in the domain of put . In the case of data duplication, if only
one element of the resulting pair is updated (and thus marked with an edit tag),
a view-to-view roundtrip is then able to propagate the modification to the other
element and restore the invariant in the view. In addition, a weaker version of
PutGet, baptized PutGetPut (put ◦ get ◦ put v put), is required, to ensure
that, when editing a view, applying put to update the source and computing the
new view with get is sufficient to synchronize all the changes. The preorder v
reflects the partiality of put , given that the domain of get may be larger than
the range of put .

A follow-up work approached the automatic derivation of backward trans-
formations based on a notion of view-update under constant complement [20].
Instead of assuming forward injective functions, they now take any get : C → A
and derive an explicit complement function getc : C → H , such that the tupled
function get4 getc :C → A × H is injective. The put function is then calculated
from the specification (get4 getc)−1 ◦ (id × getc). The bidirectional properties
follow those of closed view-updating [3], where the source is hidden from the
users when the view is updated. Besides the fundamental stability condition,
there are undoability and composability conditions that, as shown by Diskin
[14], yield precisely the very well-behaved lenses first presented in [15]. However,
these additional properties are defined modulo partiality of put since, according
to the constant complement approach, put should forbid any changes to the in-
formation that the complement has kept. For instance, inserting and removing
elements are forbidden updates in their running example of a filtering lens.

To avoid restricting the syntax of the forward transformations, Voigtländer
allows normal Haskell functions to be used in lens definitions [27]. In this sce-
nario, reasonable backward transformations can be derived by observing the
runtime behaviour of the forward transformations. A higher-order bidirection-
alizer bff is defined that receives a polymorphic get function and returns the
corresponding put function, ensuring bidirectional properties similar to [20]. Al-
though, for example, the mapping lens is not definable in this framework, there
are some lenses supported by bff that are not expressible with our combinators,
namely polymorphic functions that duplicate information. However, likewise to
[20], it is debatable how much bidirectionalization is truly achieved, concerning
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the degree of partiality of the backward transformation. For example, in this
framework the put function of the length lens would not try to synchronize up-
dates that change the shape of the abstract view, and thus would only be defined
for the cases when the length of the original list remains constant.

Wang et al [28] propose a language of right-invertible point-free combinators
denoting total transformations, in order to define a view mechanism on datatypes
that enables sound equational reasoning at the view level. However, they only
consider pure abstractions (i.e, without a put function that takes into account
old concrete values), and the chosen right-inverses of most of their combinators
essentially coincide with the create functions of our lens combinators. Since their
language also includes non-surjective datatype constructors as primitives, an ad-
ditional compile-time check is required to test the joint surjectivity of programs
involving constructors. The inclusion of a fold combinator also raises concerns
regarding the termination of anamorphisms as right-inverses, and, likewise to
our approach, additional constraints on the coalgebras must be checked.

In previous work, we have proposed a two-level bidirectional transformation
framework (2LT) for data refinement [9, 4], where forwards and backwards trans-
formations were also specified in the point-free style, and type-safeness of the
value migration functions was ensured with a deep embedding in Haskell. Later,
we have shown how point-free program calculation could be used for the opti-
mization of large compositions of bidirectional transformations and structure-shy
query migration from the source to the target types [12, 13]. In this paper, we
tackle the dual problem of abstraction, using similar techniques to define generic
point-free lenses: we intend to incorporate them into the 2LT framework, in or-
der to enlarge the scope of model transformation scenarios to which it can be
applied, and benefit from the optimization strategies previously implemented.

5 Conclusion

In this paper we have shown how to lift most of the standard point-free com-
binators and recursion patterns to well-behaved lenses. This enables the def-
inition of elegant, generic, and, hopefully, intuitive lenses over inductive data
types. Concerning recursion, we have identified precise termination conditions
that allow folds and unfolds to be lifted to well-behaved lenses. Notice that we
can also tackle arbitrary recursive lenses by expressing them as hylomorphisms,
i.e the composition of a fold after an unfold. Using the techniques described
in [10], we have also implemented a Haskell library, with the combinators pre-
sented in this paper and some more, to aid the construction of functional bidirec-
tional programs by composition. The library is extensible, by supporting user-
defined lens combinators, and is available through the Hackage package reposi-
tory (http://hackage.haskell.org) under the name pointless-lenses, hon-
oring a common joke about point-free programming.

Complex lens transformations suffer from degraded performance due to the
cluttering of intermediate structures originated from the combination of smaller
transformations. In the short run, we intend to apply the techniques developed
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for point-free refinement optimization [12, 13] to the optimization of complex
lenses defined by composition. Oliveira [25] already showed that a relational
point-free calculus can be a more natural setting to formalize bidirectional trans-
formations. This relational calculus can provide several advantages, such as rea-
soning about termination, computing inverses of arbitrary transformations, and
expressing structural invariants over data-types. The latter is of utmost impor-
tance to statically calculate the domain on which a put function is well-defined,
thus widening the set of potential well-behaved lenses to combinators like split
or the injections.
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J. Visser, editors, Proceedings of the 2nd International Summer School on Genera-
tive and Transformational Techniques in Software Engineering (GTTSE’07), pages
139–198, Berlin, Heidelberg, July 2007. Springer-Verlag, LNCS 5235.

26. P. Stevens. Bidirectional model transformations in QVT: Semantic issues and
open questions. In Proceedings of the 10th ACM/IEEE International Conference
on Model Driven Engineering Languages And Systems (MoDELS’07), pages 1–15,
Berlin, Heidelberg, 2007. Springer-Verlag, LNCS 4735.



20 Pacheco, Cunha

27. J. Voigtländer. Bidirectionalization for free! (Pearl). In Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’09), pages 165–176, New York, NY, USA, 2009. ACM.

28. M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Translucent Abstrac-
tion: Safe Views through Invertible Programming. Draft available at
http://web.comlab.ox.ac.uk/files/2280/total.pdf, 2010.

A Point-free Laws

f ◦ id = f ∧ id ◦ f = f Id-Nat

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-Assoc

f ◦ h = g ◦ h ⇐ f = g Leibniz

π14π2 = id ×-Reflex

π1 ◦ (f 4 g) = f ∧ π2 ◦ (f 4 g) = g ×-Cancel

(f 4 g) ◦ h = f ◦ h4 g ◦ h ×-Fusion
(f × g) ◦ (h4 i) = f ◦ h4 g ◦ i ×-Absor

(π1∇π1) ◦ distr = π1 Distr-Fst

(π1 +π1) ◦ distl = π1 Distl-Fst

(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-Functor-Comp

f ◦ (g ∇ h) = f ◦ g ∇ f ◦ h +-Absor

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-Functor-Comp

inF ◦ outF = idµF ∧ outF ◦ inF = idF µF In-Out-Iso

F f ◦ F g = F (f ◦ g) Functor-Comp

F id = id Functor-Id

([g ])F ◦ inF = g ◦ F ([g ])F Cata-Cancel

f ◦ ([g ])F = ([h])F ⇐ f ◦ g = h ◦ F f Cata-Fusion

[bd(outF )ce]F = id Ana-Reflex

outF ◦ [bd(h)ce]F = F [bd(h)ce]F ◦ h Ana-Cancel

[bd(g)ce]F ◦ f = [bd(h)ce]µF ⇐ g ◦ f = F f ◦ h Ana-Fusion

[[[g , h]]]F = g ◦ F [[[g , h]]]F ◦ h Hylo-Cancel

g ◦ [[[h, i ]]]F ◦ j = [[[k , l ]]]F ⇐ g ◦ h = k ◦ F g ∧ i ◦ j = F j ◦ l Hylo-Fusion

B Proofs

Proof ([bd(f )ce]G is a well-behaved lens).

get ◦ create = id
⇔ {definition of get ; Ana-Reflex}
[bd(getf )ce]G ◦ create = [bd(outG)ce]G
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⇐ {Ana-Fusion}
getf ◦ create = G create ◦ outG
⇔ {definition of create; Cata-Cancel}
getf ◦ createf ◦G create ◦ outG = G create ◦ outG
⇐ {Leibniz}
getf ◦ createf = id
⇔ {CreateGet}
true

get ◦ put
= {definition of get }
[bd(getf )ce]G ◦ put
= {Ana-Fusion; definition of put }

getf ◦ [[[putf , fzipG create ◦ (outG× getf )4π2]]]G ⊗A = G put ◦ h

⇔ {Hylo-Cancel}
getf ◦ putf ◦ (G ⊗A) put ◦ (fzipG create ◦ (outG× getf )4π2) = G put ◦ h
⇔ {PutGet; ×-Functor-Comp}
π1 ◦ (G put ◦ fzipG create ◦ (outG× getf )4π2)
⇔ {×-Cancel}
G put ◦ fzipG create ◦ (outG× getf ) = G put ◦ fzipG create ◦ (outG× getf )

[bd(fzipG create ◦ (outG× getf ))ce]G
= {Ana-Fusion}

G π1 ◦ fzipG create ◦ (outG× getf ) = outG ◦ π1
⇔ {Fzip-Cancel; × -Cancel}
outG ◦ π1 = outG ◦ π1

[bd(outG)ce]G ◦ π1
= {Ana-Reflex}
π1

put ◦ (get4 id)
= {definition of put }

[[[putf , (fzipG create ◦ (id × getf )4π2) ◦ (outG× id)]]]G ⊗A ◦ (get4 id)

= {Hylo-Fusion}
(fzipG create ◦ (id × getf )4π2) ◦ (outG× id) ◦ (get4 id)
= (G ⊗A) (get4 id) ◦ (getf 4 id)
⇔ {×-Absor; × -Absor; × -Cancel}
(fzipG create ◦ (outG ◦ get4 getf )4 id)
= (G (get4 id)× id) ◦ (getf 4 id)
⇔ {Ana-Cancel; × -Fusion}
(fzipG create ◦ (G get4 id) ◦ getf 4 id)
= (G (get4 id)× id) ◦ (getf 4 id)
⇔ {Fzip-Split; × -Absor}
(G (get4 id) ◦ get4 id) = (G (get4 id) ◦ getf 4 id)

[[[putf , getf 4 id ]]]G ⊗A = id
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= {Hylo-Uniq; GetPut}
id

Proof (Fzip-Cancel).

Id π1 ◦ fzipId f
= {Fzip-Def; Id-Nat}
π1

T π1 ◦ fzipT f

= {Fzip-Def; Id-Nat}
π1

(F ⊗G) π1 ◦ fzipF ⊗G f
= {Fzip-Def}
(F π1×G π1) ◦ (fzipF f × fzipG f ) ◦ distp
= {×-Functor-Comp; Fzip-Cancel; Fzip-Cancel}
(π1×π1) ◦ distp
= {Distp-Def; × -Absor; × -Cancel; × -Cancel}
π1 ◦ π14π2 ◦ π1
= {×-Fusion; × -Reflex; Id-Nat}
π1

(F ⊕G) π1 ◦ fzipF ⊕G f
= {Fzip-Def}
(F π1 + G π1) ◦ (fzipF f ∇F (id 4 f ) ◦ π1 + G (id 4 f ) ◦ π1∇ fzipG f )
◦ dists
= {+-Functor-Comp; +-Absor; +-Absor}
(F π1 ◦ fzipF f ∇F π1 ◦ F (id 4 f ) ◦ π1 + G π1 ◦G (id 4 f ) ◦ π1∇G π1
◦ fzipG) ◦ dists
= {Fzip-Cancel; Fzip-Cancel; Functor-Comp; Functor-Comp}
(π1∇F (π1 ◦ (id 4 f )) ◦ π1 + G (π1 ◦ (id 4 f )) ◦ π1∇π1) ◦ dists
= {Functor-Id; Functor-Id}
((π1∇π1) + (π1∇π1)) ◦ dists
= {Dists-Def; Distr-Fst; Distr-Fst}
(π1 +π1) ◦ distl
= {Distl-Fst}
π1


