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Abstract. Able to simultaneously encode discrete transitions and con-
tinuous behaviour, hybrid automata are the de facto framework for the
formal specification and analysis of hybrid systems. The current paper
revisits hybrid automata from a coalgebraic point of view. This allows to
interpret them as state-based components, and provides a uniform the-
ory to address variability in their definition, as well as the corresponding
notions of behaviour, bisimulation, and observational semantics.

1 Introduction

1.1 Context

Consider a cruise control system. It comprises digital controllers, sensors, and
actuators, that act in coordination to make the vehicle reach the intended speed.
The system’s behaviour, from an external perspective, is observed in the (contin-
uous) evolution of a physical process (velocity). But at the same time we know
that the controller, which has influence over this process, changes its internal
state in a discrete manner.

Systems with this interaction pattern are often called hybrid. Their formal
specification and analysis typically resorts to the theory of hybrid automata
[Hen96], whose distinguishing feature is the ability of state variables to con-
tinuously evolve. This allows to express the evolution of physical processes, like
movement, time, temperature, and pressure. In addition, there is syntactical ma-
chinery (guards, state invariants, and assignments) to facilitate the description
of complex behaviour in a concise manner. For illustration purposes,

Example 1. Consider a (simplistic) system comprised of a tank and a valve con-
nected to it. The valve allows water to flow in at a rate of 2cm/s during intervals
of c seconds; between these periods the valve is shut (also) for c seconds. We can
describe this behaviour via the hybrid automaton below.
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The variable l denotes the water level, which rises when the valve is open (differ-
ential equation l̇ = 2). Then, the differential equation ṫ = 1 defines the passage
of time, which, along with invariant t ≤ c, forces the current state to be active
for at most c seconds. On the other hand, the guards t ≥ c and assignments
t := 0 force the current state to be active at least c seconds before a switch.
Finally, note that the guards t ≥ c do not force transitions to happen, but only
permit them. This means that if not for invariant t ≤ c, the valve could be open
(or shut) indefinitely.

The semantics of hybrid automata is traditionally described in terms of la-
belled transition systems (lts): each hybrid automaton yields an lts whose
edges encode both the discrete events and continuous evolutions (cf. [Hen96]).
Edges in the latter are labelled by elements of R≥0 and reflect the difference
of state variables with respect to the source and sink nodes. For example,
denoting the left state (of the previous hybrid automaton) by m1, the edge

(m1, 1, 0.5)
t−→ (m1, 1 + 2t, 0.5 + t) exists in the underlying lts iff 0.5 + t ≤ c.

This will be explained in more detail in Section 2.
For now, we emphasise that such a semantics ‘collapses’ both discrete assign-

ments and continuous evolutions into the same relation, which makes difficult
to distinguish the system’s internal, thus hidden behaviour (typically its state
changes), from what can be observed externally. Such a distinction, however, is
at the very heart of the component-based paradigm, in which complex systems
are verified through a suitable analysis of their (simpler) constituents (see e.g.,
[Bar03, HJ11, SBBB15, Szy98]).

To understand hybrid automata as state-based components is an important
step towards their coalgebraic characterisation in the spirit of [Bar03, HJ11].
Such an achievement would provide them several composition operators (with
corresponding laws), refinement techniques, and synchronisation mechanisms.

Another relevant point is the existence of several variants of hybrid automata
(e.g., [Hen96, Spr00, LLK+99]), motivated by the need to capture different types
of behaviour (e.g., nondeterministic, probabilistic, faulty). To the best of our
knowledge, a uniform, formal theory for different types of hybrid automata does
not yet exist.

1.2 Contributions

This paper characterises hybrid automata as coalgebras of a specific type. This
promotes the black-box perspective discussed above, where the (discrete) state
transitions are internal, hidden from the environment, and the continuous evo-
lutions are external, making up the observable behaviour. To be concrete,

– ‘going coalgebraic’ provides a uniform, canonical observational semantics
that faithfully reflects the black-box perspective, and frames the behaviour
into well known constructions (e.g., streams, infinite binary trees), marking
a separation between the discrete domain and the continuous one.

– Moreover, a generic (coalgebraic) characterisation of bisimulation, parame-
trised by a transition type (technically, a functor), emerges across different



sorts of hybrid automata in a uniform manner. Indeed, it is shown that
different notions of bisimilarity (associated with variants of hybrid automata)
are subsumed by the corresponding coalgebraic definition.

We will also see that the coalgebraic characterisation proposed in this paper
facilitates the understanding of hybrid automata and helps to systematise the
concept along a plethora of, often elaborated, definitions in the literature. In its
most basic variant, a hybrid automaton becomes reduced to a machine that from
a state (internally) jumps to another, and (externally) produces a continuous
evolution. As expected, this implies that, even in the presence of both discrete
and continuous behaviour, only the continuous part can be directly observed.

The coalgebraic characterisation paves the way to yet another contribution:
a hierarchy of different types of hybrid automata organised with respect to their
‘expressivity’, a concept also to be here understood within the coalgebraic frame-
work.

This paper’s agenda (on characterising hybrid automata as coalgebras) takes
a path similar to the one pursued by Sokolova in [Sok05]; the goal was to provide
a uniform, coalgebraic view of probabilistic systems.

1.3 Roadmap

Section 2 provides a brief background on hybrid automata and coalgebras. Sec-
tion 3 establishes the relation between classic hybrid automata (in a determin-
istic setting) and the corresponding coalgebras. In particular, it shows how to
encode hybrid automata as coalgebras, explores the associated observational se-
mantics, and reframes the classic notion of bisimulation (for hybrid automata)
as a coalgebraic one.

Then, building on the coalgebraic perspective, Section 4 considers different
types of functors in order to (re)discover several variants of hybrid automata.
Two interesting cases are the ones that involve probabilistic [Spr00] and replica-
ting behaviour, the latter being new to the best of our knowledge. Section 4 also
establishes the hierarchy of hybrid automata mentioned above. Finally, Section
5 concludes and hints at future work directions.

We assume that the reader has some familiarity with elementary category
theory and topology.

2 Background

2.1 Hybrid automata

Introduced in the early nineties as an answer to the rapid emergence of hybrid
systems, hybrid automata form an active research area that encompasses diverse
topics. These span from decidability [Hen96], to extensions that cater for input
mechanisms (e.g., [AH97, LLK+99]), and uncertainty [Spr00]. Hybrid automata
have also been considered as a modelling tool in life sciences [BCB+09, AMP+03].
Formally,



Definition 1 ([Hen96]). A hybrid automaton is a tuple (M,E,Σ,X, init, inv,
dyn, asg, grd) where

– M is a finite set of discrete states (often called control modes, or locations),
E is a transition relation E ⊆ M × Σ ×M , and Σ a set of labels. A triple

(m1, l,m2) ∈ E will often be written as m1
l
 m2.

– X is a finite set of real-valued variables {x1, . . . , xn}.
– init and inv are functions that associate to each mode a predicate over the

variables in X. Letter Z denotes the set {(m, v) ∈ M × Rn | v |= (inv m)},
where expression v |= (inv m) means that predicate (inv m) is satisfied by v.

– dyn is a function that associates to each state a predicate over the variables
in X ∪ Ẋ, where Ẋ = {ẋ1, . . . , ẋn} represents the first derivatives of the
variables in X. It is used to define the set of continuous evolutions that may
occur at each state.

– asg is a function such that given an edge (e ∈ E) returns a predicate over
X ∪X ′, where X ′ = {x′1, . . . , x′n} represents the variables in X immediately
after a discrete jump. This provides an assignment to each edge. Finally, the
function grd associates each edge with a guard, i.e., a predicate over X.

A classic example may help to illustrate this quite complex definition.

Example 2. Consider a bouncing ball dropped at some positive height p and
with no initial velocity v. Due to the gravitational acceleration g, it falls into
the ground but then bounces back up, losing part of its kinetic energy in the
process. The following hybrid automaton sums up this behaviour.

ṗ = v
v̇ = g
p ≥ 0

p = 0 ∧ v > 0,
v′ = v ×−0.5ee

Note that only one mode exists; let us call it m. Also, there is exactly one
discrete transition: m  m ∈ E, omitting its label for simplicity. Actually, in
this example there is no need for labels. Then X = {p, v}, and (inv m) is p ≥ 0 –
which entails Z = {m}×R≥0×R, where the second (R≥0) and third components
(R) denote, respectively, position and velocity.

Finally, grd(m  m) is p = 0 ∧ v > 0, (dyn m) is {ṗ = v, v̇ = g}, and
asg(m m) is v′ = v ×−0.5 ∧ p′ = p. Note that the right-hand side of the last
predicate does not appear in the hybrid automaton above, a common practice
to avoid a burdened notation.

In order to keep results simple and intuitive, we do not consider labels or initial
states, as they can be accommodated later on in a straightforward manner.

Frequently it is assumed that, given any mode, function dyn returns a sys-
tem of differential equations with exactly one solution (e.g., [Jac00, ACH+95,
Dav97]). We adopt this approach as well. Such an assumption may seem too re-
strictive but, in fact, such is not the case for most hybrid systems described in the



literature, as they rarely involve nonlinear differential equations. The important
point is that this condition allows function dyn to induce a function,

flow : (M × Rn)× R≥0 → Rn

such that given a pair (m, v) ∈ (M × Rn), flow ((m, v), −) : R≥0 → Rn is a
continuous function, which represents the solution to the system of differential
equations; note that its domain (R≥0) represents time.

Assume also that an hybrid automaton cannot jump from a valid state
(m, v) ∈ (M ×Rn) into an invalid one, where by valid we mean that (m, v) ∈ Z.
In symbols, assume that for any pair

(
(m1, v1), (m2, v2)

)
∈ (M × Rn)2 such

that m1  m2, v1 |= grd(m1  m2), and (v1, v2) |= asg(m1  m2) we have
v2 |= (inv m2).

As mentioned in Section 1, the semantics of hybrid automata is traditionally
described in terms of ltss.

Definition 2 ([Hen96]). Consider a hybrid automaton. Its underlying lts is
a tuple (Z,L, T ) such that L = 1+R≥0 (1 is a singleton set), and T ⊆ Z×L×Z
is defined as

(
(m1, v1), l, (m2, v2)

)
∈ T iff

1. if l ∈ 1 then m1  m2, v1 |= grd
(
m1  m2

)
, (v1, v2) |= asg

(
m1  m2

)
,

2. if l ∈ R≥0 then m1 = m2, flow ((m1, v1), l) = v2, and for all t ∈ [0, l]
flow ((m1, v1), t) |= (inv m1).

We write a triple (z1, l, z2) ∈ T as z1
l−→ z2.

Example 3. Recall the hybrid automaton from Example 2. The associated lts
(Z,L, T ) is defined as follows: Z = {m} × R≥0 × R, L = 1 + R≥0, and

(m, p1, v1)
l−→ (m, p2, v2) iff

1. if l ∈ 1 then p1 = 0 ∧ v1 > 0, and v2 = v1 ×−0.5 ∧ p1 = p2;

2. if l ∈ R≥0 then flow ((m, p1, v1), l) = (p2, v2), and for all t ∈ [0, l],
flow ((m, p1, v1), t) ≥ 0.

In this case the function flow, induced by dyn, describes the continuous evolution
of position and velocity (between jumps).

Note that both discrete events and continuous evolutions are embedded in
the relation T . Not only this makes difficult to adopt the black-box perspective
mentioned above, but it also turns the verification of hybrid automata into a
challenging task, as an infinite number of states and edges needs to be taken
into consideration. The standard technique for overcoming the latter issue is to
quotient by a bisimulation equivalence, i.e., to collapse states that possess equiv-
alent behaviour. The resulting states become then symbolic representations of
(possibly infinite) regions, and verification techniques are applied to the reduced
system instead.



Definition 3 ([Hen96]). Consider the underlying labelled transition system
(S,L, T ) of a hybrid automaton, and an equivalence relation Φ ⊆ S × S over
the states. A Φ-bisimulation R ⊆ S × S is a relation such that (s1, q1) ∈ R (or
more concisely, s1 R q1) entails the following cases:

1. s1 Φ q1,

2. for each label l ∈ L, if s1
l−→ s2 then there is a state q2 such that q1

l−→ q2
and s2 R q2,

3. for each label l ∈ L, if q1
l−→ q2 then there is a state s2 such that s1

l−→ s2
and s2 R q2.

Two states s1, q1 ∈ S are Φ-bisimilar (in symbols, s1 ≡Φ q1) if they are related
by a Φ-bisimulation.

We will start our (coalgebraic) rendering of hybrid automata in a deterministic
setting, restricting Definition 1 with the following conditions:

1. Relation E is a function (E : M →M).

2. Assignments are deterministic, i.e., they take the form x := θ, where θ is
an expression with variables of X that denotes a real value, and x ∈ X. For
example, in the case of the bouncing ball above, the assignment v′ = v×−0.5
is changed to v := v × −0.5. Note that Example 1 (tank-and-valve) also
adopted this approach.

3. As soon as an edge becomes enabled (i.e. the associated guard is satisfied)
the current state must switch (a similar condition is adopted in [Nad97],
where hybrid automata with this property are called time-deterministic).
More concretely, each pair (m, v) ∈ Z has exactly one duration (δ ∈ R≥0)
for its evolution flow((m, v),−) : R≥0 → Rn, which, intuitively, corresponds
to the time that the current mode takes to jump starting in (m, v). This
happens, for example, in the hybrid automaton that describes the tank-and-
valve (c seconds) and the bouncing ball system (the time the ball takes to
reach the ground from a specific height and velocity).

Unlike the two conditions above, this condition, which we refer to as as-
soon-as, is assumed throughout the paper.

The three conditions together give no possibility for a hybrid automaton to
choose between possible executions, and therefore induce a function nxt : Z → Z,
which given a pair (m, v) ∈ Z, returns the pair that results from the correspond-
ing evolution (given by function flow and associated duration δ) and subsequent
discrete transition. Formally,

nxt(m, v) =
(
E(m), asg(m E(m)) u)

where u = flow((m, v), δ). By a slight abuse of notation we denote the expression
asg(m  E(m)) as a function. Note also that the value u is the last point (in
the evolution of (m, v)) before the jump.



2.2 Coalgebras

The theory of coalgebras [Rut00] establishes an abstract, categorial framework
that promotes a uniform study of state-based transition systems1. The idea is
that a functor F : C→ C over some category C (typically, Set) gives ‘shape’ to
a transition type, and arrows S → FS in C (F-coalgebras, or simply coalgebras)
make up the family of corresponding transition systems.

Definition 4. Consider a functor F : C→ C. It gives rise to category CoAlgF

whose objects are coalgebras S → FS, and morphisms between two coalgebras
α : S → FS, β : Q → FQ are arrows f : S → Q in C such that the diagram
below in the left commutes.

S

α

��

f
// Q

β

��

FS
Ff
// FQ

S

α

��

[(−)]
// νF

γ

��

FS
F[(−)]

// FνF

Under mild conditions, a category CoAlgF has a final object, i.e., a coalgebra
γ : νF → FνF such that for any coalgebra α : S → FS there is a unique
morphism [(−)] : S → νF that makes the diagram above in the right to commute.
A prime example is the final coalgebra 〈tl, hd〉 : Aω → Aω × A in the category
of (− × A)-coalgebras. Briefly, Aω is the set of infinite lists (i.e., streams) of
elements in A, and 〈tl, hd〉 is defined as,

〈tl, hd〉 (a0, a1, . . . ) = ((a1, . . . ), a0).

Since 〈tl, hd〉 is final, each coalgebra α : S → S×A has a unique morphism [(−)]α :
S → Aω, called the behaviour or coinductive extension of α – whenever found
suitable we will drop the subscript in [(−)]α. Intuitively, [(−)]α : S → Aω gives
the observable behaviour of each state (s ∈ S) of α : S → S ×A. Actually, final
objects in categories of coalgebras provide the observational semantics mentioned
in Section 1.

Bisimulation is another key concept in coalgebra theory.

Definition 5. Consider two F–coalgebras α : S → FS, β : Q → FQ in Set,
and a relation R ⊆ S×Q. Then R is an F-bisimulation (or simply bisimulation)
if there is a third coalgebra γ : R → FR that makes the following diagram to
commute.

S

α

��

R
π1oo

π2 //

γ

��

Q

β

��

FS FR
Fπ1

oo
Fπ2

// FQ

1 We restrict ourselves to the concepts strictly necessary to the paper. The interested
reader will find in document [Rut00] a comprehensive introduction to the theory of
coalgebras.



We say that states s ∈ S, and q ∈ Q are coalgebraically bisimilar (in symbols,
s ∼ q) if they are related by some F-bisimulation.

3 Deterministic hybrid automata as coalgebras

3.1 The model

In order to encode hybrid automata as coalgebras, recall the state-based, black-
box perspective described in the introductory section: discrete transitions occur
internally, hidden from the environment, whereas the observable behaviour (or
output) corresponds to continuous evolutions. As explained before, for any given
suitable pair (m, v) ∈ (M×Rn), a hybrid automaton outputs a continuous evolu-
tion over Rn, with a specific duration δ ∈ R≥0. Formally, a continuous function
[0, δ] → Rn where [0, δ] has the subspace topology induced by the Euclidean
one, and Rn has the Euclidean topology – this requires a brief use of topological
notions in the following construction.

Definition 6. Generalising the output type from Rn to an arbitrary topological
space (O, τ), the output of an hybrid automaton is defined as the sum of all
continuous evolutions over (O, τ). In symbols,

U
( ∐
δ∈R≥0

(O, τ)[0,δ]
)

where [0, δ] is equipped with the subspace topology induced by the Euclidean one,
and U : Top → Set is the forgetful functor between the category of topological
spaces and continuous functions (Top) and Set. We will denote the construction
above by H(O, τ).

Functor U : Top→ Set forgets the topological structure keeping just the under-
lying set. Also, note that the construction above requires the use of topologies
because only continuous evolutions [0, δ]→ (O, τ) should be considered to cap-
ture the intended systems.

Whenever no confusion arises, we denote H(O, τ) by HO. Intuitively, the
reader may simply see HO as the set of continuous evolutions over some output
space O. More details about the construction HO can be found in document
[NBHM16].

For what follows, let us denote the curried version of a function f : A×B →
C, by λf : A→ CB . Then, consider a hybrid automaton and recall that each pair
(m, v) ∈ Z defines flow((m, v),−) : R≥0 → Rn whose domain can be restricted
to duration [0, δ]. This leads to a function λ flow : Z → H(Rn), which by a slight
abuse of notation, and for the sake of generality we type as

out : Z → HO.

Finally, note that function out : Z → HO, together with function nxt : Z → Z
(see Section 2), forms a (−×HO)-coalgebra

〈nxt, out〉 : Z → Z ×HO,



which (fully) characterises the behaviour of the hybrid automaton.
The intuition is that each state (m, v) ∈ Z gives rise to an observable, continuous
evolution (e ∈ HO), and an internal, discrete transition to the next state (z ∈ Z).
Let us illustrate this concept with a few examples.

Example 4. Recall the tank-and-valve system described in Section 1. The corre-
sponding coalgebra 〈nxt, out〉 : Z → Z ×HO is defined as

〈nxt, out〉(m1, l, t) = ((m2, l + 2 c, 0), f), 〈nxt, out〉(m2, l, t) = ((m1, l, 0), g)

where the functions f, g : [0, c]→ R2 are defined as

f r = (l + 2r, t+ r), g r = (l, t+ r).

Example 5. Consider again the bouncing ball system and, for illustration pur-
poses, take only its movement as the observable behaviour. The corresponding
coalgebra 〈nxt, out〉 : Z → Z ×HO is given by

〈nxt, out〉 (m, p, v) =
(
(m, 0, v′),mov(p, v,−)

)
where variable v′ corresponds to the (abrupt) change of velocity due to the col-
lision, function mov(p, v,−) : [0, δ] → R describes the ball’s movement between
jumps, and δ denotes the time that the ball takes to reach the ground from state
(p, v). In symbols,

v′ = (v + gδ)×−0.5, mov(p, v, t) = p+ vt+ 1
2gt

2, δ =

√
2gp+v2+v

g

As mentioned in the previous section, each coalgebra S → S × HO yields a
function [(−)] : S → (HO)ω which computes, for a given s ∈ S, a stream of
(observable) continuous evolutions [(s)], which correspond to the (internal) states
that are visited starting in s. For example,

Example 6. Consider again the bouncing ball system; the first three elements of
[((0, 5))] are represented in the following plots.

0 0.2 0.4 0.6 0.8 1
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Note that coalgebras of type S → S × HO are more general than one may
expect. Actually, they also subsume feedback loop systems, whose architecture is



traditionally depicted as in the diagram below.

C

��

P
OO

The idea is that boxes C and P denote, respectively, a discrete controller and a
physical process interacting with each other: the former has influence over the
latter through some sort of actuator, but its execution process also depends on
the behaviour of P. For example, the controller may only react if the temperature
is getting too high, or the car is getting too close to another.

To put such a system in the form of a (− ×HO)-coalgebra, define S to be
the product of the controller’s state space M with the possible values that P
can take; thus S = M ×O. Intuitively, a pair (m, o) ∈ S defines the controller’s
current state, and the process’ current value. Again, this gives rise to a function
out : S → HO that associates each state (m, v) to the evolution that is going to
occur for the next δ time units. Then, we extract the last value of the evolution
(function lst : HO → O) and pair the result with the next state of the controller
(given e.g., by function t : S →M). Summing up, we have

M ×O 〈t,out〉−→ M ×HO
id×〈lst,id〉−→ M ×O ×HO.

3.2 Bisimulation in the deterministic case

Recall from the previous section that bisimulation for hybrid automata (Defini-
tion 3) is parametrised by an equivalence relation over the state space. Let us
see how to capture this coalgebraically.

Consider a coalgebra 〈nxt, out〉 : Z → Z ×HO (modelling a hybrid automa-
ton) and an equivalence relation over its states Φ ⊆ Z×Z. We define a coalgebra
〈nxt, out〉Φ : Z → Z ×H(Z/Φ) such that

〈nxt, out〉Φz = (nxt z, q · (ev z))

where ev : Z → HZ is defined as (ev(m, v)) t = (m, (out(m, v)) t), and q : Z →
Z/Φ is the quotient map induced by Φ.

Technically, 〈nxt, out〉Φ is a FZ/Φ-coalgebra where FZ/ΦX = X × H(Z/Φ).
Intuitively, coalgebra 〈nxt, out〉Φ behaves like 〈nxt, out〉 but allows its internal
states and continuous evolutions to be ‘partially’ observed; ‘how much’ one can
observe, is dictated by the equivalence relation Φ. Denoting Z/Φ by Q,

Definition 7. Consider a coalgebra 〈nxt, out〉Φ : Z → Z × HQ induced by a
hybrid automaton and an equivalence relation Φ ⊆ Z×Z. A relation R ⊆ Z×Z
is a coalgebraic Φ-bisimulation iff there is a FZ/Φ-coalgebra γ : R → R ×HQ
that makes the following diagram to commute.

Z

〈nxt,out〉Φ

��

R
π1oo

π2 //

γ

��

Z

〈nxt,out〉Φ

��

Z ×HQ R×HQ
π1×id
oo

π2×id
// Z ×HQ



We say that states z1, z2 ∈ Z are coalgebraically Φ-bisimilar (in symbols, z1 ∼Φ
z2) if they are related by a coalgebraic Φ-bisimulation.

Given two functions f, g : A→ B, and relation R ⊆ B×B, denote the condition
∀a ∈ A. (f a)R (g a) by f Rg. Definition 7 tells that a relation R is a coalgebraic
Φ-bisimulation iff z1 R z2 implies

(ev z1) Φ (ev z2), and (nxt z1)R (nxt z2).

Theorem 1. Let 〈nxt, out〉Φ : Z → Z ×HQ be induced by a hybrid automaton
and an equivalence relation Φ ⊆ Z × Z. Then for any two states z1, z2 ∈ Z,
z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In appendix.

4 When different transition types come into play

4.1 The general picture

The previous section introduced a coalgebraic semantics for hybrid automata
in a deterministic setting. The behaviour of digital controllers, however, is far
more complex, often combining nondeterministic, or probabilistic features. This
calls for variations in the definition of hybrid automata, and, consequently, for a
more general coalgebraic semantics, able to capture such variants in a uniform
manner. Therefore, we consider coalgebras,

〈nxt, out〉 : S → (FS ×HO)I

where F determines an internal transition type and, set I denotes an input type.
Technically, such arrows can be decomposed into nxt : S×I → FS, out : S×I →
HO (again by a slight abuse of notation). This makes clear that variations in
functor F correspond to variations on how the system (discretely) jumps to a next
state. In regard to hybrid automata, we will see that these changes are essentially
reflected in relation E and the assignment function asg (recall Definition 1).

Table 1 lists several variations of the functor F and input type I. Each variant
corresponds to a specific definition of hybrid automata. Some of the latter are
already well known (e.g. the nondeterministic case in row 4), but others are new
and thus have not been studied before (e.g. the replicating case in row 3).

This illustrates the high level of genericity that coalgebras bring to the theory
of hybrid automata: specific types of automata are captured in specific instanti-
ations of functor F, and global constructions and results are defined parametric
on F once and for all. For example, such is the case of coalgebraic Φ-bisimulation,
which we will discuss in Section 4.4.



Coalgebra Functor F Behaviour Input

S → (S ×HO) Id X = X Deterministic No

S → (S ×HO)I Id X = X Deterministic Yes

S → (∆S ×HO) ∆X = X ×X Replicating No

S → (PS ×HO) PX = {A ⊆ X} Nondeterministic No

S → (DS ×HO) DX = {µ ∈ [0, 1]X | µ[X] = 1}2 Probabilistic No

S → (PDS ×HO) PD — Segala3 No

Table 1. Possible variants for F.

The cases listed in table 1 will be discussed in more detail in the following
sections.

4.2 Reactive and replicating behaviour

The arrows S → (S ×HO) were studied in the previous section. We saw that
they provide a suitable coalgebraic semantics for deterministic hybrid automata.
Hence, we pass directly to arrows typed as,

S → (S ×HO)I .

These correspond to a variant of hybrid automata, qualified as open (or reactive),
that takes input/output into consideration (cf. [LLK+99]); thus extending the
classical definition of hybrid automata (Definition 1) as follows:

Definition 8 ([LLK+99]). Fix an input set I. Then, add I to the domain of
functions dyn, inv, grd, and asg, keeping the remaining components equal.

For example, while in the classic case each mode m ∈M gave rise to a predicate
(inv m), now each pair (m, i) ∈M × I induces a predicate (inv (m, i)).

Similarly, function flow : (M × Rn) × R≥0 → Rn, induced by dyn, has now
the signature

flow : (M × Rn)× I × R≥0 → Rn.

In order to encode open hybrid automata as coalgebras, the condition as-soon-as
also needs to be slightly changed: while previously each pair (m, v) ∈ (M × Rn)
was associated with a duration δ (see Section 2), now we require the same for
each triple (m, v, i) ∈ (M ×Rn× I). As in Sections 2 and 3, we also assume that
an open hybrid automaton cannot jump from a valid state into an invalid one.
Then, let us define function nxt : Z × I → Z as

nxt(m, v, i) =
(
E(m), asg(m E(m), i) u

)
2 µ[X] =

∑
x∈X µ x.

3 Traditionally this expression refers to systems with both nondeterministic and prob-
abilistic behaviour.



where u = flow(m, v, i, δ). Finally, given functions nxt : Z×I → Z, out : Z×I →
HO, we form coalgebra

〈nxt, out〉 : Z → (Z ×HO)I .

Let us illustrate the expressive power of (− ×HO)I -coalgebras via an example
related to the bouncing ball system.

Example 7. Suppose we can set the instants of time at which the ball bounces –
this may be interpreted, for example, as a foot that kicks the ball up. To define
such a behaviour one can construct the following coalgebra:

〈nxt, out〉 (m, p, v, i) =
(
(m, 0, v′),mov(p, v,−)

)
where v′ = (v + gi) × −0.5, and function mov(p, v,−) : [0, i] → R is defined as
before.

The category of (−×HO)I -coalgebras also has a final coalgebra. Formally, the
following diagram commutes uniquely,

S

α

��

[(−)]
// (HO)I

+

γ

��

(S ×HO)I
([(−)]×id)I

// ((HO)I
+ ×HO)I

where I+ denotes the set of nonempty lists of elements in I, and

(γ f) i = (g, f [i]), g is = f (i : is).

Intuitively, any coalgebra α : S → (S ×HO)I , induces a unique function [(−)] :

S → (HO)I
+

(cf. [Jac12]), such that [(s)] associates to each nonempty list of
inputs the last evolution observed in α, starting in s ∈ S.

Example 8. In Example 7 we considered a bouncing ball system that allows to
choose the instants of time at which the ball bounces. Expressions [((0, 5))] [0.8],
[((0, 5))] [0.8, 0.6], and [((0, 5))] [0.8, 0.6, 0.6] denote the following sequence.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

time

p
os

[((0, 5))] [0.8]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

time

p
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[((0, 5))] [0.8, 0.6]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

time

p
os

[((0, 5))] [0.8, 0.6, 0.6]



Functor Diagonal (∆) gives rise to arrows of type 〈nxt, out〉 : S → ∆S ×HO.
These correspond to deterministic hybrid automata, as studied in Section 3, but
now able to jump to two different places at the same time. The intuition is that
such systems replicate themselves at each discrete transition. For example, the
bouncing ball would turn into two at each bounce. From a strict computer science
point of view this may seem rather strange, but in other areas it is a common
behaviour: e.g., in biology, cells indeed replicate when a specific saturation point
is reached. To the best of our knowledge, there is no variant of hybrid automata
in the literature associated with this type of behaviour.

4.3 Nondeterministic and probabilistic behaviour

Let us now concentrate on the powerset functor (P). Actually, for the sake of
simplicity we will restrict to its finitary versionPω, which considers only the
finite subsets of a given set X. As expected, it gives rise to arrows typed as,

Z → (PωZ ×HO)

which precisely correspond to a nondeterministic version of the hybrid automata
explored in the previous section. More concretely,

– relation E, previously assumed to be a function, is now finitely branching
(i.e., each mode has a finite number of outgoing edges),

– the assignments are allowed to be finitely non deterministic, meaning that
the value assigned to a variable is determined up to a finite number of pos-
sibilities.

Thus, function nxt : Z → PωZ is defined as

nxt(m, v) =
⋃

m′∈E(m)

(
{m′} × asg(m m′)(u)

)
where u = flow(m, v, δ), and asg(m m′) is regarded as a function that given a
tuple of valuations v ∈ Rn, returns the assignments that are possible to perform.

Consider now probabilistic branching by taking F = D, or F = PωD, in
S → (FS ×HO). Interestingly, hybrid automata whose internal transition type
corresponds to PωD were already introduced in document [Spr00]. The idea is
that these systems are able to nondeterministically choose a distribution function
over the states (which, intuitively, gives the probability of a given state being the
next one). Actually, not only this allows to equip edges with probabilities, but it
also gives rise to probabilistic assignments: for example, one may say x := x+10
with probability 0.9.

We refer the interested reader to this paper’s appendix for a more detailed
overview of arrows S → DS ×HO, S → PωDS ×HO and their correspondence
to the probabilistic hybrid automata introduced in [Spr00].



4.4 Bisimulation and observational semantics

Let us now generalise the notion of coalgebraic Φ-bisimulation (Definition 7)
to coalgebras typed as 〈nxt, out〉 : Z → (FZ × HO)I . As before, assume that
Z ⊆M×Rn. Then given an equivalence relation Φ ⊆ Z×Z, we define coalgebra
〈nxt, out〉Φ : Z → (FZ ×HQ)I similarly to before. More concretely,

〈nxt, out〉Φ(z, i) = (nxt(z, i), q · (ev(z, i)))

where ev : Z × I → HZ is a function such that for any z = (m, v) ∈ Z, i ∈ I,
(ev(z, i)) t = (m, (out(z, i)) t), and q : Z → Z/Φ is the quotient map induced by
Φ. Then denoting Z/Φ by Q,

Definition 9. Consider a coalgebra 〈nxt, out〉Φ : Z → (FZ ×HQ)I induced by
an equivalence relation Φ ⊆ Z × Z. A relation R ⊆ Z × Z is a coalgebraic Φ-
bisimulation if there is a coalgebra R → (FR ×HQ)I that makes the following
diagram to commute.

Z

〈nxt,out〉Φ
��

R
π1oo

π2 //

��

Z

〈nxt,out〉Φ
��

(FZ ×HQ)I (FR×HQ)I
(Fπ1×id)I
oo

(Fπ2×id)I
// (FZ ×HQ)I

We say that states z1, z2 ∈ Z are coalgebraically Φ-bisimilar (in symbols, z1 ∼Φ
z2) if they are related by a coalgebraic Φ-bisimulation.

Observe that a coalgebraic Φ-bisimulation R is, in fact, a coalgebraic bisim-
ulation in the category of (F ×HQ)I -coalgebras. Moreover, note that this defi-
nition coincides with Definition 7 when F = Id and I = 1. Actually, for F = Pω,
F = PωD (with I = 1) we have the following results relating classic and coalge-
braic Φ-bisimilarity, ≡Φ and ∼Φ, respectively.

Theorem 2. Consider a coalgebra 〈nxt, out〉Φ : Z → (PωZ ×HQ) induced by
a nondeterministic hybrid automaton and an equivalence relation Φ ⊆ Z × Z.
Then for any two states z1, z2 ∈ Z, z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In appendix.

Theorem 3. Consider a coalgebra 〈nxt, out〉Φ : Z → (PωDZ ×HQ) induced by
a probabilistic hybrid automaton [Spr00] and an equivalence relation Φ ⊆ Z×Z.
Then, for any two states z1, z2 ∈ Z, z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In appendix.

Another interesting aspect to mention concerns open hybrid automata and the
apparent absence of a suitable notion of Φ-bisimulation for them (see the previous
subsection and also [LLK+99]). However, instantiating Definition 9 with F = Id,
we obtain a suitable notion of Φ-bisimulation for such automata, which gives
evidence to the generality of the coalgebraic framework.



In order to characterise the observational semantics associated with the arrows
S → (FS × HO)I , we need to guarantee the existence of a final (F × HO)I -
coalgebra.

In Set, the existence of an observational semantics (i.e.a final coalgebra) for
systems of type S → (FS × HO)I is ensured whenever functor F is bounded
(cf. [Rut00]). This is not a strong condition. Actually, it holds for all polynomial
functors, the finite powerset (Pω), and all composites made up of these cases (the
reader will find in [Rut00, GS02] a complete characterisation of this condition
and corresponding proofs). Another case is the distribution functor with finite
support (Dω); more explicitly, the restriction of functor D that only considers
distributions µ ∈ DωX with a finite number of elements x ∈ X such that µx > 0
(see the proof, for example, in [Jac12], Theorem 4.6.9).

Therefore, all cases enumerated in Table 1 have a final coalgebra provided
that functors P and D are restricted to their finitary versions.

4.5 A hierarchy of hybrid automata

Natural transformations are a suitable mechanism to transform a coalgebra into
another of a different transition type, because naturality entails preservation
of bisimilarity [Sok05]. The case for reflection, however, is more complex: as
described in [Sok05], in Set bisimilarity is reflected when the natural transfor-
mation is injective (i.e., all its components are injective), and the underlying
functor of the resulting system preserves weak pullbacks.

Fortunately, it is known that all polynomial functors, the powerset, and the
distribution functor, preserve weak pullbacks (cf. [Sok05]). Moreover, preserva-
tion of weak pullbacks is closed by composition. Therefore, in many cases check-
ing for reflectivity reduces to checking for injectivity. Actually, this is precisely
the case for all variants of S → (FS ×HO)I considered in this paper.

Observe that from a natural transformation τ : F → G we can construct the
natural transformation

(τ × id)I : (F ×HO)I → (G×HO)I .

Then, given a coalgebra α : S → (F × HO)I , via the natural transformation
above, we define

((τ × id)I)S · α : S → (GS ×HO)I .

Since all internal transition types (functors) considered in this paper preserve
weak pullbacks, from the existence of injective natural transformations (between
transition types), it is possible generate a hierarchy of systems in terms of their
expressive power.

‘To be more expressive’ here means that looking at an (F×HO)I -coalgebra
as a (G × HO)I -coalgebra – through the natural transformation τ : F → G –
never entails loss of observable information. In other words, if two states of a
(F ×HO)I -coalgebra are bisimilar when looking at the latter as a (G ×HO)I -
coalgebra, then the same is true before the application of τ (i.e. coalgebraic



bisimilarity is reflected). The hierarchy is expressed in the following diagram of
injective natural transformations,

Pω

Pωυ

99

∆

Id //
υ //
??

τ

??

``

κ

``

D //
κ′ // PωD

where for any set X, τX x = (x, x), υX x = µ where µ x = 1, κX x = {x}, and
κ′X µ = {µ}. Note that there is no injective natural transformation ∆ → Pω
as order is not preserved. Moreover observe that the obvious mapping Pω → D

(which maps any finite set to the corresponding uniform distribution) does not
respect naturality.

We conclude by mentioning the canonical injective natural transformation
(F × HO) → (F × HO)I (assuming that I 6= ∅), which, given an element,
returns the constant function over it. This adds to the hierarchy the obvious
relation between a family of systems and the corresponding extended version
that harbours the input/output dimension.

5 Conclusions and future work

Even if hybrid automata are the standard formalism for hybrid systems, their
definition often needs to cater for different computational behaviours found in
practice. In order to make such a process systematic, this paper proposes a coal-
gebraic rendering of hybrid automata. This allows the study of several variants
of the latter, as well as related notions, (e.g., bisimulation, observational seman-
tics) in a uniform manner, at the same time promoting a black-box perspective in
which discrete actions are hidden from the environment while continuous evolu-
tions make up the observable behaviour. Furthermore, this characterises hybrid
automata as (coalgebraic) components, in the spirit of [Bar03, HJ11].

Interestingly, a somewhat dual perspective appears in the work of Jacobs
[Jac00], where an object-oriented approach for hybrid systems is pursued. More
concretely, hybrid systems are viewed there as coalgebras equipped with a monoid
action (to represent time) that acts over the state space, forcing continuous evo-
lutions to be hidden from the environment. Such a view allows to express physical
processes that (continuously) evolve internally, and are possible to interact with
at specific instants of time.

It is also relevant to mention the work of Haghverdi et al. [HTP05], whose
aim is to provide an abstract notion of bisimulation for dynamical, control, and
hybrid systems (the latter being understood as hybrid automata). To achieve
this, they resort to the notion of an open map, which has a close relation to
that of coalgebras. Variants of hybrid automata, however, are not taken into
consideration.



As future work, we intend to further explore different variants of hybrid
automata by varying the functor that gives shape to the internal transitions. For
example, arrows of type S → (DS ×HO)I , giving rise to what we call ‘reactive
Markov hybrid automata’, deserve an independent study. Other interesting cases
are replicating hybrid systems (which we briefly addressed here) and the arrows
S → WS ×HO (WS = KS , for K a set of weights), which makes possible to
prescribe costs to discrete transitions and assignments.

Going more generic, and in order to drop the condition as-soon-as (see Section
2), one may extend the internal transition type to the ‘continuous part’ by
considering arrows of type S → (F(S ×HO))I instead. In some cases, however,
this may be problematic, as the transition type would need to have a continuous
nature. For instance, probabilistic behaviour should be replaced with a stochastic
counterpart instead.

On a different note, recall that the results established in this paper allow
to define a general characterisation of bisimulation for (different types of) hy-
brid automata. Such results pave the way to do the same for other notions of
bisimulation, one interesting example being approximate bisimulation for hybrid
automata [GP11].

Finally, a coalgebraic characterisation of hybrid automata makes possible to
see them as hybrid components (cf. [NBHM16]), in the spirit of [Bar03, HJ11].
Generally speaking, this sort of component reproduces the black-box perspec-
tive here adopted; and the associated calculus brings to hybrid automata several
forms of composition operators (e.g., parallel, pipelining, sum), refinement tech-
niques, and wiring mechanisms, as well as the corresponding algebraic laws. We
are currently studying the results brought by this development to the theory of
hybrid automata.
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Appendix (probabilistic hybrid automata)

To encode probabilistic hybrid automata (pha) [Spr00] as coalgebras, requires
the introduction of new definitions and notational aspects. We start with the
definition of pha to which we introduce slight changes. In particular, we as-
sume that the assignments are described via predicates of the form x := θ,
that function dyn always returns a systems of differential equations with exactly
one solution, and finally that condition as-soon-as holds. Actually, these are the
assumptions took along the paper (cf. Section 2).

Definition 10 ([Spr00]). A probabilistic hybrid automaton is a tuple
(M,E,X, inv, dyn, c) where

– Sets M,X, and functions inv, dyn are defined as in the classic case.
– E : (M × Rn) → PωD(M × Pred(X ∪X ′)) is a function that for each pair

(m, v) ∈ M × Rn returns a set of probability distributions over modes and
predicates interpreted as assignments (of type x := θ).

– Finally, c : M → C is a colouring function.

Note that in this case function grd (from Definition 1) is ‘directly embedded’
in function E. This is a result of taking a variant of E where guards are not
considered, and then removing those distributions whose associated guard is not
satisfied by the given input (m, v) ∈ (M × Rn). Note also the new function
c : M → C, which gives an observable ‘colour’ to each mode.

Due to the assumptions stated above, for any pair (m, v) ∈ Z there is exactly
one corresponding semi-flow and duration (recall Section 2), which allows to
recover function

out : Z → HO.

Let us now define function nxt : Z → PωDZ. This proceeds along the lines of
document [Spr00]. Formally,

Definition 11. Given a pair (m, v) ∈ Z, we have µ ∈ nxt (m, v) iff there is a
distribution ν ∈ E ( ev(m, v, δ) ) with support(ν) = {(m′1, ϕ1), . . . , (m′n, ϕn)} and
a corresponding list of valuations [v′1, . . . , v

′
n] that meets the following conditions:

– for any 1 ≤ i ≤ n, (flow(m, v, δ), v′i) |= ϕi, and

– for any (m′, v′) ∈ Z, µ (m′, v′) =
∑
i∈J

ν (m′, ϕi)



where J = {1 ≤ i ≤ n |m′ = m′i, v
′ = v′i}.

Intuitively, the summation above is used to add the probabilities of pairs in
M × Pred(X ∪X ′) that lead to the same results. For example, let the current
value of a variable x be 10, give probability 0.5 to assignment x := x + 1, and
the same probability to assignment x := 1 + x. Clearly, the probability of x to
become 11 is 1.

Finally, we obtain coalgebra

〈nxt, out〉 : Z → (PωDZ ×HO).

In the remainder of this section we will compare the traditional notion of bisim-
ulation for pha against the notion of coalgebraic bisimulation introduced in
Section 4. For this, we need the following definitions.

Definition 12 ([Spr00]). Given a pha, let us define probabilistic transition
system (Z, d : Z → C, r : Z × L → PωDZ) such that, d = c · π1, L = 1 + R≥0,
and

r (m, v, ?) =

{
nxt (m, v) if ev (m, v, δ) = (m, v)

∅ otherwise

r (m, v, t) =

{
{µ ∈ DZ} if t ∈ [0, δ]

∅ otherwise

where µ is the Dirac distribution such that µ (ev (m, v, t)) = 1, and δ is the
duration associated with state (m, v).

Note that condition ev (m, v, δ) = (m, v) entails that (m, v) is the last state
before a discrete transition.

Definition 13. Consider a relation R ⊆ S×Q, and two distributions µ1 ∈ DS,
µ2 ∈ DQ. Then, let us define relation �R⊆ DS ×DQ such that µ1 �R µ2 iff
there is a function ν ∈ D(S ×Q) such that for any s ∈ S, q ∈ Q

– if ν(s, q) > 0 then s R q,
– µ1 s = ν [{s} ×Q], and
– µ2 q = ν [S × {q}].

where ν [X], for X ⊆ S ×Q, denotes
∑
x∈X

ν x.

Definition 14. Consider a probabilistic hybrid automaton and its underlying
probabilistic transition system (Z, d : Z → C, r : Z×L→ PωDZ). Let Ω ⊆ Z×Z
be an equivalence relation such that x Ω y iff d x = d y.

A relation R ⊆ Z × Z is a probabilistic bisimulation iff z1 R z2 implies,

– z1 Ω z2,
– if µ1 ∈ r (z1, l) then µ2 ∈ r (z2, l) and µ1 �R µ2,
– if µ2 ∈ r (z2, l) then µ1 ∈ r (z1, l) and µ1 �R µ2.



Given two states z1, z2 ∈ Z, we write z1 ≡Ω z2 when they are related by some
probabilistic bisimulation.

This notion of bisimulation is quite peculiar, at least in comparison to the notion
of bisimulation for classic hybrid automata (see Definition 3). Indeed, here only
one equivalence relation is considered (Ω), and moreover it only takes the discrete
modes into account.

Finally, we reach the main result of this section (see e.g., document [Sok05]
for an introduction to coalgebraic probabilistic bisimulation).

Appendix (proofs)

Proof of Theorem 1. Relies on the relation between deterministic hybrid au-
tomata (Section 3) and the nondeterministic variant (Section 4.3). Consider two
states z1, z2 ∈ Z. Then,

z1 ≡Φ z2 (det. hybrid automata)

⇔ { The notion of Φ-bisimulation coincides (Definition 3) }

z1 ≡Φ z2 (nondet. hybrid automata)

⇔ { Theorem 2 }

z1 ∼Φ z2 (Pω ×HO)

⇔ { Definition of coalgebraic Φ-bisimulation (Definition 9) }

z1 ∼ z2 (Pω ×HQ)

⇔ { The natural transformation κ : Id→ Pω is injective (Section 4.5) }

z1 ∼ z2 (Id×HQ)

⇔ { Definition of coalgebraic Φ-bisimulation }

z1 ∼Φ z2 (Id×HO)

ut

In the ensuing proofs we will take advantage of function lst : Z → Z. Given a
state z ∈ Z of a hybrid automaton, it returns the last state before a discrete
transition, in symbols lst z = ev(z, δ).

Moreover, we will take advantage of the following construction. Given a re-
lation R ⊆ Z × Z over the states of an hybrid automaton. Define R? as the
smallest relation such that R ⊆ R?, and if xRy then (ev x)R? (ev y). Note that
for any pair (a, b) ∈ R? we have (ev a)R?(ev b).

Proof of Theorem 2. Assume that z1 ≡Φ z2. This entails the existence of a Φ-
bisimulation R such that z1 R z2. Then, assuming that a R b, we will show that
R is also a coalgebraic Φ-bisimulation. In particular, we will show the following
cases:



– (ev a) Φ (ev b),

a R b

⇒ { Definition of Φ-bisimulation }

(ev a)R (ev b)

⇒ { Definition of Φ-bisimulation }

(ev a) Φ (ev b)

– x ∈ (nxt a) implies that there is some y ∈ (nxt b) such that x R y,

a R b, x ∈ (nxt a)

⇔ { nxt a = nxt · lst a }

a R b, (lst a)
?−→ x

⇒ { Definition of Φ-bisimulation }

(lst a)R (lst b), (lst a)
?−→ x

⇒ { Definition of Φ-bisimulation }

(lst b)
?−→ y, x R y

⇔ { nxt b = nxt · lst b }

y ∈ (nxt b), x R y

– y ∈ (nxt b) implies that there is some x ∈ (nxt a) such that x R y.
The proof is analogous to the above.

Let us now assume that z1 ∼Φ z2. This entails the existence of coalgebraic Φ-
bisimulation R such that z1Rz2. We will show that R? is a Φ-bisimulation. Thus
assume that a R? b, and reason about the following cases:

– a Φ b,

a R? b

⇒ { Definition of R? }

∃ c, d ∈ Z. c R d ∧ ∃ t ∈ [0, δ]. ev(c, t) = a ∧ ev(d, t) = b

⇒ { R is a coalgebraic Φ-bisimulation }

a Φ b



– a
l−→ x implies that there is some y such that b

l−→ y and x R? y.
If l ∈ [0, δ] then,

a R? b, a
l−→ x

⇔ { Definition of ev (let x = ev(a, l)) }

a R? b, a
l−→ ev(a, l)

⇒ { Definition of R? }

(ev a)R? (ev b), a
l−→ ev(a, l)

⇒ { Definition of ev }

b
l−→ ev(b, l), x R? (ev(b, l))

If l ∈ 1 then,

a R? b, a
?−→ x

⇒ { Definition of R? }

∃ c, d ∈ Z. c R d ∧ ∃ t ∈ [0, δ]. ev(c, t) = a ∧ ev(d, t) = b

⇒ { nxt c = nxt a }

x ∈ (nxt c)

⇒ { R is a coalgebraic Φ-bisimulation }

∃ y ∈ (nxt d). x R y

⇒ { nxt d = nxt b, R ⊆ R? }

b
?−→ y, x R? y

– b
l−→ y implies that there is some x such that a

l−→ x and x R? y.
The proof is analogous to the above.

ut

Proof of Theorem 3. Assume that z1 ≡Ω z2. This entails the existence of a
probabilistic bisimulation R such that z1 R z2. Then, assuming that a R b, we
will show the following cases:

– (ev a)Ω (ev b),

a R b

⇒ { Definition of probabilistic bisimulation }

a Ω b

⇔ { Definition of ev and Ω }

(ev a)Ω (ev b)



– µ1 ∈ (nxt a) entails that there is some µ2 ∈ (nxt b) such that µ1 �R µ2,

a R b, µ1 ∈ (nxt a)

⇔ { nxt a = nxt · lst a }

a R b, (lst a)
?−→ µ1

⇒ { Definition of probabilistic bisimulation }

(lst b)
?−→ µ2, µ1 �R µ2

⇔ { nxt b = nxt · lst b }

µ2 ∈ (nxt b), µ1 �R µ2

– µ2 ∈ (nxt b) entails that there is some µ1 ∈ (nxt a) such that µ1 �R µ2.
Proof is analogous to the case above.

Let us now assume that z1 ∼Φ z2. This entails the existence of coalgebraic
Φ-bisimulation R such that z1 R z2. We will show that R? is a probabilistic
bisimulation. Thus assume that a R? b, and reason about the following cases:

– a Ω b,

a R? b

⇒ { Definition of R? }

∃ c, d ∈ Z. c R d ∧ ∃ t ∈ [0, δ]. ev(c, t) = a ∧ ev(d, t) = b

⇒ { R is a coalgebraic Ω-bisimulation, and c R d }

a Ω b

– a
l−→ µ1 implies that there is some µ2 such that b

l−→ µ2 and µ1 �R? µ2.
First consider a label l ∈ [0, δ].

Assume that a R b and a
l−→ µ1. By definition 12, we have b

l−→ µ2, where
both µ1, µ2 are Dirac distributions such that,

µ1(ev(a, l)) = 1 ∧ µ2(ev(b, l)) = 1.

We will show that µ1 �R? µ2.

Define the Dirac distribution such that ν(ev (a, l), ev (b, l)) = 1. It remains
to prove the following properties,



• if ν (s, q) > 0 then s R? q,

a R? b, ν (s, q) > 0

⇒ { Definition of R? }

(ev a)R? (ev b), ν (s, q) > 0

⇒ { Definition of ν }

(ev a)R? (ev b), s = ev(a, l), q = ev(b, l)

⇒ { Notation }

s R? q

• µ1 s = ν [{s} ×Q],

∗ if s = ev (a, l), µ1 s = 1 ∧ 1 = ν [{s} ×Q].

∗ if s 6= ev (a, l), µ1 s = 0 ∧ 0 = ν [{s} ×Q].

• µ2 q = ν [S × {q}].
The proof is analogous to the case above.

If l ∈ 1,

a R? b, a
?−→ µ1

⇒ { Definition of R? }

∃ c, d ∈ Z. c R d ∧ ∃ t ∈ [0, δ]. ev(c, t) = a ∧ ev(d, t) = b

⇒ { nxt c = nxt a }

µ1 ∈ (nxt c)

⇒ { R is a coalgebraic Ω-bisimulation }

µ2 ∈ (nxt d), µ1 �R µ2

⇒ { nxt d = nxt b, R ⊆ R? }

b
?−→ µ2, µ1 �R? µ2

– b
l−→ µ2 implies that there is some µ1 such that a

l−→ µ1 and µ1 �R? µ2.
The proof is analogous to the case above.
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