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Abstract. LISS, Language of Integers, Sequences and Sets, is a toy-
programming language that allows us to operate with atomic or struc-
tured integers values (literals and variables) developed in the context of
a Compilers Course, to teach parsing and code generation (a complete
compiler) for a traditional imperative and block-structured programming
language.
LISS has the traditional integer, and array (of integers) data types. But
beside that, the language includes dynamic sequences and sets of integers;
sets are defined in comprehension, so the programmer can define and
use infinite sets. More recently, the language was extended with other
unusual data types in imperative languages: complex, polynomial, point,
polygon, and tree.
The language (LISS) syntax and (static and dynamic) semantics is com-
pletely specified via an attribute grammar. The compiler, that generates
Assembly for the VM virtual stack-machine, is automatically produced
with the AG-based compiler generator LISA.
It is our purpose in this paper to introduce the extension made to LISS
type syntax. LISS Compiler will also be presented, emphasizing the ap-
proach followed to cope with the unusual data types.

1 Introduction

The definition of new languages—to specialize a generic one for some applica-
tion domain, or to generalize some operations/constructors that can be used in a
broader domain—is a challenge for programmers. However, the design of a nice
language requires some domain knowledge and good-practices. The development
of a processor for the new language (many times called, the language implemen-
tation task) is complex; starting from the scratch, is not a simple task and can
lead to a time consuming and bad solution; nowadays there are a supporting
theory, methods and tools to accomplish it successfully.
In parallel and similarly, to teach language processing is another challenging
and complex task. Centering the course on the definition and implementation of
domain specific languages (DSL) makes life easier for the teacher because smaller
and much more motivating projects can the proposed and handle completely. But
the study of a complete compiler is richer in many senses and is an item that
should not be discarded. However, once again, it is an hard work that requires
the existence of an appropriate pedagogical kit.



This paper focus on LISS Compiler (LissC) aiming at bringing into discussion its
value as a learning object for Compiler Courses, or even as a test bed for research
projects on Language Processing.
The implementation of LissC involves the specification of: the source language,
LISS; the target language, VM Assembly; and the translation-scheme. It, also,
requires the choice of: a translation method—Syntax-directed Translation (SDT),
or Semantic-directed Translation (SemDT); the data structures adequate to store
the information necessary for the translation process; and the tools that will be
used for automatic generation of the compiler modules.
One of the claims of this paper is that Semantic-directed Translation is much more
convenient—in fact we defend the compilation model based on a front-end (FE)
that analyzes the source text and builds an error-free intermediate representation
(IR), an abstract syntax tree (AST ) decorated with attributes, and a back-end
(BE) that traverses it and generates the output code. This approach makes the
conception and the specification tasks much easier; both the compiler developer
and the teacher—that need to start the work describing the compiler architecture
and then specify each component—take profit of that model.
To support that approach, we argue that an attribute grammar [Knu68], AG,
(see also[Cou84,Eng84,DJL88,Kas91]), is a good (complete, coherent, declara-
tive) specification formalism that allows to define rigorously in a systematic
way the language syntax, static semantics and also the dynamic semantics (the
translation); moreover, the AG definition provides mechanisms to validate the
completude and soundness of each language specification. Along the article some
examples are given to show that the AG description of scope analysis, type check-
ing or code generation becomes easy, systematic and clear.
We also claim that a virtual machine [Dor75,Cra06] is a good choice as the target
of the translation, if efficiency is not a strong requirement. Besides the fact that
it is interesting to conceive and implement a virtual machine, the generation of
code for a virtual machine guarantees its portability and makes the translation
much easier; mainly the instruction selection phase becomes simpler because in
a virtual machine we avoid alternative operations to do the same thing.
LISS—that stands for Language of Integers, Sequences and Sets—is a Pascal-
like [Wir76] imperative (or procedural) programming language. The language
is designed to process—input/output, store, and operate—atomic or structured
integer values; those values can be constants or variables. LISS includes control
statements and subprograms to allow the programmer to write structured code.
In order to illustrate one of the cleverest features of a compiler—data type im-
plementation—LISS language was conceived with powerful and unusual types.
Integer and Array of Integer are the traditional types supported by LISS.
The basic language also supports: Sequence of Integers—ordered collection
with dynamic size (that is, that does not need a predefined dimension), and
whose components can be selected with list or array operators; Set of Integers—
unordered collection defined in comprehension (by a boolean expression over
integers). More recently, LISS was extended with the following data types, that



will be introduced in the the paper: complex; polynomial; point and polygon; and
tree.
In the paper, we introduce LISS language in section 2; after a general overview of
the language statements, the type system is described. The compiler generation,
using an attribute grammar specification and LISA tool [MZLA99,MLAZ00], is
discussed in section 3; examples of attribute evaluation rules and contextual
conditions are given for type checking and scope analysis. VM [Fil06] target
machine (a virtual stack machine with an heap mechanism for dynamic mem-
ory management) and the translation-scheme are presented in section 5. Final
remarks appear in section 6.

2 LISS language and its Data Types

LISS language follows an procedural and verbose, Pascal-like, style but it is
equipped with unusual data types. Aiming at making LISS a valuable aid for
teaching compilers, a special attention was paid to the definition of: static (com-
pile time) and dynamic (run time) type checking ; block nesting and scope analy-
sis; operational semantics of the non-standard data types; and operational se-
mantics of the input/output instructions.
In this section, we present the basic statements of the language—assignment,
read/write and control statements (conditional/cyclic). We also present LISS
data types. Their syntax is introduced by fragments of the BNF grammar, in-
cluded in this section; then, in section 3, the static semantics is formalized via an
attribute grammar (written in LISA notation)—we chose the relevant subset of
attributes, and just some evaluation rules or contextual conditions are included;
after that we discuss, in section 5, the dynamic semantics aspects showing the
the schemas followed to generate assembly code.
The following aspects of LISS language should be taken into account in the rest
of the presentation:

– All variables are initialized, when they are declared, with a type-dependent
default value according to table 2.

Type Default value
boolean false

integer, polynomial 0
complex 0+0i

array, polygon, line, rectangle [0,...,0]
set {}

sequence, tree nil
circle center—(0,0), rad—0
point (0,0)

– Alternatively, variables can be initialized explicitly with a different value.
For example:



a = -4, b, c= 5 -> integer;

v1, v2 = [10,-20,30,-40] -> array size 4;

– Variable types are just the pre-defined ones; LISS does not support any type
definition mechanism.

All variables involved in the statements, inside the body of the program, must
be declared before their use, according to the syntactic rules below:

VariableDeclaration → Vars "->" Type ’;’

Vars → Var | Vars ’,’ Var

Var → IDENTIFIER ValueVar

ValueVar → ε | ’=’ InicVar

Type → "integer" | "boolean" | "set" | "sequence"

| "array" "size" Dimension | "complex" | "polynomial"

| "point" | "square" | "polygon" | "circle"

| "tree"

Dimension → NUMBER | Dimension ’,’ NUMBER

2.1 The basic language

Assignment and I/O. The assignment operation is defined for every type;
however the value to assign (given by the expression on the right hand side) and
the variable to be assigned (on the left hand side) should have the same type.
The read operation (that assigns to a variable a value obtained from the standard
input file) is defined just for variables of type integer (atomic values).
However, the write operation (that sends a value to standard de output file) is
defined for any type.

Control statements. LISS language includes the traditional control state-
ments, conditional (two variants) and cyclic (also two variants), as follows:

ControlStat → IfStat | CaseStat

| WhileStat | ForStat

We just detail the cyclic statement for because it is different from the conven-
tional one, where a control variable (CV) takes values in a given range stepping
by a default or explicit increment. In LISS there are 4 different ways to define
the values range for the control variable: in — the CV takes values in a given
integer interval defined by the lower and upper bounds (by default the step is
1, but a different (positive or negative) increment can be set); inArray — the
CV is assigned with all the elements of an array, from the lower to the upper in-
dex; inSequence — similar to the previous, but taking values from a sequence;
inFunction — the CV takes values from the co-domain of a given 1-variable
function, computed in a subrange of its domain.
Additionally, a condition can be given to filter the values in the specified inter-
val.
The grammar fragment below defines the cycle for:



ForStat → "for" ’(’ Interval ’)’ Step Satisfy

’{’ Statements ’}’
Interval → IDENTIFIER TypeInterval

TypeInterval → "in" Range

| "inArray" IDENTIFIER

| "inSequence" IDENTIFIER

| "inFunction" IDENTIFIER "with" Interval

Range → Minimum ".." Maximum

Minimum, Maximum → NUMBER | IDENTIFIER "with" Interval

Step → ε | "stepUp" NUMBER | "stepDown" NUMBER

Satisfy → ε | "satisfying" Expression

Notice that Satisfy is a condition, so Expression should be of type boolean.
The next 2 examples help to clarify the possible ways to control the iterative
statement for:

1. Using an integer range (in), the interval 2000 to ’c’, stepping by a decrement
of 2 (stepdown), with an additional filter (satisfying);

for (a in 2000..c) stepdown 2 satisfying vector[a]==a {...}

2. Using elements of the co-domain of a function f computed in the interval 1
to 10 with increments by 1.

for (b inFunction f(x) with x in 1..10) {...}

Block structure in LISS (Sub-programs). LISS is not a mono-block lan-
guage; instead, it is possible to organize the code (for reuse, or just for the
sake of clarity) splitting the statements into sub-programs. One program unit
can contain several sub-programs, and sub-programs can also declare another
sub-programs in a Pascal-like nesting strategy.
A sub-program, before ending, can return or not a value, behaving as a function
or a procedure.
Concerning scope rules, the relevant aspects in LISS sub-programs are: variable
declared in the program unit are global, unless re-declared inside a sub-program;
variables declared in a sub-program are local, but they can be accessed in inner
blocks.
The syntax to define a sub-program is ruled out by the following grammar frag-
ment (notice that it follows precisely the same philosophy used for the program
unit).

SubProgram_Definition → "subProgram" IDENTIFIER

’(’ FormalArgs ’)’ ReturnType FBody

FBody → ’{’
"declarations" Declarations

"statements" Statements

Return ’}’
FormalArgs → ε | FArgs

FArgs → FormalArg | FArgs ’;’ FormalArg



FormalArg → IDENTIFIER "->" Type

ReturnType → ε | "->" Type

Return → ε | "return" Expression

Integers and Booleans. Values of type integer are positive or negative in-
teger numbers including zero; over integer type the usual arithmetic operators
+, -, *, /, % are allowed.
Values of type boolean are the truth values true and false; over boolean type,
the logic operators !, and, or are allowed.
Relational operators ==, !=, <, >, <=, >=, that take integer and return boolean
values, are also defined.

Arrays (static lists). LISS supports Arrays—indexed collections of integer
values such that each value is uniquely addressed by a combination of one, two
or more integer indexes (depending on the array dimension). The number of
dimensions and the maximum size of elements in each dimension is fixed at
declaration time; this is why array is said to be a static structured type.
The operations defined over array type are: indexing, denote by ’[’ ’]’ that
selects an element given the array id and the index values; cardinality, that
computes the number of elements in the array; assignment, that copies all the
elements of an array to another one; and write, that outputs all the elements
in the array, according to its dimensions.
Arrays can be initialized in the declaration, giving all or part of the elements in
each dimension. For example, consider an array of dimension 4x2; it could be
initialized in the following way:

array1 := [[1,2],[4]] -> Array size 4,2

that is equivalent to the initialization below:

array1 := [[1,2],[4,0], [0,0], [0,0]] -> Array size 4,2

The grammar fragment below defines the syntax for array declaration and ini-
tialization.

ArrayDefinition → ’[’ ArrayInitialization ’]’

ArrayInitialization → ’[’ Elem ’]’

| ArrayInitialization ’,’ Elem

Elem → NUMBER | ArrayDefinition

Sequences (dynamic lists). In LISS a value of type sequence is a list (ordered
collection) of integers. Similar to a uni-dimensional array (also called a vector),
a sequence does not have a fixed size; its actual size is not define at declaration
time (as for array values) but it grows dynamically at run time.
The operations defined over sequence type are: add inserts a new element at
the head or at tail of a sequence; head and tail select the head or the tail of



a sequence; indexing, denoted ’[’ ’]’, selects the element at the index position;
remove deletes a given element; empty verifies if the sequence is null; length
computes the number of elements in the sequence; in checks if a given value
belongs to the sequence; assignment copies all the elements of a sequence to a
new one; and write outputs all the elements in a sequence.
As in arrays, dynamic lists can be initialized at declaration time, according to
the following grammar rules:

SequenceDefinition → ’[’ SequenceInitialization ’]’

SequenceInitialization → ε | Values

Sets. A value of type set is a collection of integers, without repeat numbers.
In LISS a set is defined by comprehension, instead of enumeration.
The operations defined over set type are: union; intersection; in, all of them
with the known mathematical meaning. assignment is also allowed, as well as
write, but in both cases working with the conditional expression that describes
the set instead of set elements.
The syntax for set declaration and initialization is:

SetDefinition → ’{’ SetInitialization ’}’
SetInitialization → ε | IDENTIFIER ’|’ Expression

Notice that Expression should be a boolean expression like: x < 6 && x > -7 || x > 10.

2.2 The extension

In this section, we introduce the recent data types added to the basic LISS
language.

Geometric values. In LISS some geometric shapes—point, line, rectangle,
polygon and circle—can now be handled.
The operations defined over set type are: draw; zoom, using a given percentage;
rotate; and assign; write.
The syntax for geometric shapes declaration and initialization is:

Point → ’(’ Constant ’,’ Constant ’)’

CircleDefinition → ’(’ CircleInitialization ’)’

CircleInitialization → ε
| Constant ’,’ Point

| Constant ’,’ Constant ’,’ Constant

LineDefinition → ’[’ LineInitialization ’]’

LineInitialization → ε
| Point ’,’ Point

SquareDefinition → ’[’ SquareInitialization ’]’

SquareInitialization → ε
| Point ’,’ Point ’,’ Point ’,’ Point



PolygonDefinition → ’[’ PolygonInitialization ’]’

PolygonInitialization → ε | LstPoints

Notice that Constant is a variable or an integer.
Some examples of the declaration and initialization of geometric shapes is pre-
sented below.

point1 = (1,2), point2 -> point;

ray = 2 -> integer;

circle1 = (ray, point1), circle2 = (raio,0,0) -> circle;

line1 = [point1, point2] -> line;

square = [(0,0), (0,1), (1,0), (1,1)] -> rectangle;

poly1 = [(0,0), (0,2), (1,1), (2,2), (1,6)] -> polygon;

Polynomials. Polynomial values of any degree, with integer coefficients and
exponents, are allowed.
The operations defined over polynomial type are: add, subtract, and deriva-
tion, the usual arithmetic operators; assignment; and write.
The syntax for polynomial type declaration and initialization is:

PolynomialDefinition → Monomial

| PolynomialDefinition (’+’ | ’-’) Monomial

Monomial → Coefficient VarDegree

Coefficient → ε | NUMBER

VarDegree → (’*’ | ε) IDENTIFIER ’^’ NUMBER

Complex. Complex numbers with integer in the real and complex parts, can
also be handled in LISS.
The operations defined over complex type are: add, multiplication, subtract,
division, the usual arithmetic operators; real part and imaginary part, to
select both parts of the complex number; assignment; and write.
The syntax for complex type declaration and initialization is:

ComplexDefinition → Real (’+’ | ’-’) Imaginary

Real → Coefficient

Imaginary → Coefficient ’i’

Notice that Coefficient is an integer value.

Binary trees. Another primitive data type in LISS is the binary search tree.
The operations defined over binary tree type are: add inserts an element in
the search tree; delete removes a given element of the tree; find search for a
given element in the tree; in-order, pre-order e post-order, the three usual
tree-traversals; assignment; and write.
The syntax for Binary Tree type declaration and initialization is:



TreeDefinition → "NIL"

| tree ’(’ Constant ’,’ TreeDefinition

’,’ TreeDefinition ’)’

Notice that Constant is an integer value.

3 Compiler Development

In this section we present the compiler generator LISA [MZ03] used to produce
automatically LISS Compiler, LissC; then we present the philosophy (as detailed
in [MHK+02]) underlying the development of an attribute grammar [Tie80].
The instantiation of that approach for the LISS Compiler will be illustrated in the
next two sections with attribute grammar fragments that describe type checking,
scope analysis, and code generation.

3.1 The compiler generator LISA

LISA (Language Implementation System based on Attribute grammars) is a
compiler-compiler, or a system that generates automatically a compiler/interpreter
from formal attribute grammar -based language specifications. As LISA accepts
as input an attribute grammar (in a single file), it generates all the modules of
the compiler: lexical, syntactical and semantic analyzers, and code generator.
By default, the compiler generated outputs (prints) the value of all synthesized
attributes associated with the grammar root, or star-symbol.
LISA is platform independent; the system is written in JAVA and compilers ara
also generated in JAVA.
LISA environment offers some menu options to generate and run the compiler,
and provides an editor to write the attribute grammar, and some visual inspec-
tors to analyze/debug the attribute grammar. Namely: a graphical representation
of the lexer, more precisely of the transition function of the DFA (Deterministic
Finite Automata) generated from the regular expressions that describe the ter-
minal symbols; a visualizer for the syntax diagram describing the context-free
grammar; and a visualizer for the Attribute Dependency Graph local to each
production.
Besides its main task (generate the intended processor), LISA also produces
somes tools to work with the new language: a structural editor to create or
inspect source programs; a syntax tree visualizer, to see the parsed structure of
a given program; and a semantic animator that presents the attributed abstract
syntax tree for a given program and shows its decoration, this is, the attribute
evaluation process and the tree reduction.

3.2 LISS attribute grammar, the approach

This subsection is intended to emphasize the expressive power of the attribute
grammar -based approach to language formalization, as well as its simplicity and
systematization.



To specify LISS Compiler, we chose 5 main attributes1: symbolTable, Scope, Code,
Errors, and Comments. Those attributes, described below, are associated with the
majority of grammar non-terminals, and support the specification of the lan-
guage semantic constraints (contextual conditions) and code generation. Other
attributes included in the attribute grammar are auxiliary and are used just to
keep temporary information local to some productions.

1. (in|out)symbolTable — inherited/synthesized attribute to map the identifiers
(variable, function, or procedure names) declared all over the program (in-
cluding subprograms) into their description; the attribute is implemented as
an hashtable, where the key is the identifier (name) and the associated value
is a tuple composed by: the class, the type, the memory-address, and the
scopeLevel2;

2. (in|out)Scope — inherited/synthesized attribute to control the nesting level;
3. (in|out)Errors — inherited/synthesized attribute to concatenate the messages

generated each time an error is detected during semantic analysis, this is each
time a contextual condition is violated (for instance: type or scope rules not
obeyed);

4. (in|out)Code — inherited/synthesized attribute to contain the assembly code
generated as long as the program is being translated;

5. (in|out)Comments — inherited/synthesized attribute to concatenate the com-
ments to include in the assembly code generated, in order to help under-
standing the compiler’s output; actually, a comment line is generated, for
each declaration or statements in the source program, containing the source
text (of the declaration/statement) and its position (line/column), so that
it becomes easy to relate the input with the corresponding output code.

In the next section (sec. 4 we present the strategy followed to specify the semantic
analysis, namely type checking and scope checking tasks; they use the first three
attributes above mentioned: symbolTable, Scope, and Errors. The other two,
Code and Comments concerned with Assembly code generation, will be explained
in section 5.

4 Semantic Analysis in LISS

4.1 Type checking

To discuss type checking in LISS Compiler, we will consider 2 different cases:
Variable declaration processing; and Assignment processing.

1 Notice that actually we have 10 attributes, because for each one we need an inherited
and a synthesized attribute.

2 Additional information—like array dimensions, procedure/function arguments,
etc.—can also be included in the symbolTable, depending on the identifier class.



Variable declaration. To process a variable declaration in LISS, like the one
exemplified below:
point1 = (2,3), point2, point3 -> point.
two actions must be done: a) each identifier recognized in the list on the left-most
part of the declaration (point1, point2, point3) should be added to the iden-
tifier table (outSymbolTable) associated with its type (defined by the identifier
at the right-most part of declaration) and its memory-address (automatically
generated by the compiler); b) code should be generated to initialize the vari-
able with the default or given value. If that initial value is explicitly described
by an expression, then it is also necessary to check if the expression type and
the declared type are compatible (in LISS, compatible means the same).
The strategy followed is to associate a temporary attribute, outType, with sym-
bol Type and assign it to the attribute (inType) associate with symbol Vars.
In this way, the type can be inherited by the symbol Var through its attribute
inType. On one hand, the value of inType can be used in conjunction with the
name of the variable (given by Identifier.value) to update the inherited table
Var.inSymbolTable, and produce the new table, Var.outSymbolTabel; on the
other hand, Var.inType can be compared with the type of the expression (given
by INICVAR.outType) in order to check if the type constraint holds.
The attribute grammar fragment below (concerned with variable declaration/initialization)
illustrates the systematic way to verify a contextual condition and generate a
semantic error message3.

rule Var {

VAR ::= #Identifier INICVAR compute {

...

VAR.outSymbolTable = addIdentifier( VAR.inSymbolTable,

#Identifier.value(), VAR.inType);

VAR.outErrors = VAR.inErrors +

typeErrors(VAR.inType,INICVAR.outType) +

isRedefinedVar( VAR.inSymbolTable,

#Identifier.value,VAR.inScope);

.... };

}

By the way, notice also another semantic check, isRedefinedVar(), included in
VAR.outErrors evaluation rule; that test verifies if the declared variable name
occurs in the inherited identifier table at the same level (defined by the attribute
VAR.inScope).
Figure 1 depicts the dependency graph generated by LISA for the derivation rules
involved; that dependency graph shows the inheritance/synthesis of attributes
above described. The attributes on the left side of each symbol (blue color) are
inherited ; and those on the right side (green color) are synthesized.

3 Notice that, instead of output the message at each tree node, error messages are
concatenated all over the tree using the Error attribute; as a synthesized attribute



Fig. 1. Dependency Graph for Variable Declaration (as generated by LISA).

Assignment. Type checking in assignment is very similar to the one discussed
above for variable initialization; so the strategy followed to specify it with at-
tributes is also similar to the one discussed in the previous item.
The type of the variable on the left-hand side of the assign operator (Var.outType)
is obtained looking-up for the identifier (Var.outName) in the attribute inSymbolTable,
inherited by the non-terminal Assign. To test the contextual condition con-
cerned with type compatibility in assignment, Var.outType is compared with
the type of the expression on the right-hand side of the assign operator (the
synthesized attribute Expression.outType); for instance, in the assignment
f = tree(6,NIL,NIL), we lookup in inSymbolTable the type of variable f and
verify if it is compatible with the type of the expression tree(6,NIL,NIL) (car-
ried out as the value of the synthesized attribute outType.

4.2 Scope checking

Scope checking—concerned with the identifiers’ visibility in nested program
blocks4—is, once again, supported on the attribute inSymbolTable as it keeps
all the information about variables and sub-programs (in this case, we will make
use of the scopeLevel element of the value associated with each table key).
As referred in subsection 2.1, all identifiers (variables or sub-programs) intro-
duced in the program Declaration part are global. So, their scopeLevel has the
initial value of 0.
On entering a block (each time the begin of a sub-program is recognized) the
scopeLevel is incremented; and it will be decremented on leaving the block
(when the end of the sub-program is recognized).
This process, controlled via the (in|out)Scope attribute, is enough to allow the
re-declaration of identifiers in nested block: although with the same name, they

of the tree root, it will be automatically displayed at the end of attribute evaluation
process.

4 Remember that LISS follows a Pascal-like nesting strategy.



have different scopeLevel values, and so they are not confused; the one with
bigger value is the active one. Identifiers with a scopeLevel bigger then the
scopeLevel of the present block are not accessible.

5 Code generation

As told in the previous sections, LissC translates source programs written in
LISS into the Assembly language of its target machine—in this case, the virtual
machine VM (see details below).
Defining schema to generate code for assignment or control statements, or even
for atomic or array data types, is a trivial task; however, the other LISS data
types demand an appropriate, non-usual, translation strategy. That strategy
requires the definition of a non-standard memory allocation map (to hold conve-
niently those structured values) and an adequate code generation. After a brief
introduction to the architecture and instruction set of the VM target machine, we
illustrate the approach. For that purpose, we discuss, in the rest of the section,
the translation schema to handle complex and polynomial data types. Those
schema are specified again via an attribute grammar that uses the attributes
Code, Comments, and symbolTable defined in section 3.2.

5.1 The Virtual Machine VM

VM [Fil06], a virtual stack-machine that supports integer and float numbers, is
slightly different from the usual. It contains a special stack to save the internal
registers to allow the return from functions, and two heaps for dynamic memory
allocation—one generic and the other for character strings; it also has graphic
primitives. Its architecture and instruction set make VM an appropriate choice
as the target for LISS Compiler.

VM Architecture. VM has the following components:

– 3 stacks: a code stack for the program (the sequence of operations to be ex-
ecuted); an execution stack for global variables, function activation records
(with their parameters and local variables) and working stack (to store tem-
porary values during computations); a call stack for the value of ¡pc,fp¿
registers (to control the return from the called function).

– 2 heaps: one for strings; and the other for generic structures.

Each memory location stores one value that can be a numbers or an address. An
address can point to a location on the data/execution stack, code stack, or any
of the heaps.
Three registers control the access to the different memory blocks allocated in
the execution stack :



– The register sp (stack pointer) points to the first free cell in working stack.
– The register fp (frame pointer) points to the base address of local memory.
– The register gp (global pointer) contains the base address of global memory.

VM also has a register, pc (program counter), that every time points to the next
instruction (in the code stack) to be fetched .
That architecture is depicted in the block diagram of figure 5.1.

VM Assembly Language. For the purpose of this paper, it is not worth-while
to introduce the plain VM instruction set; we selected, an enumerate below, the
most relevant operations:

– Integer Operators: Add, Sub, Mul, Div, Mod, Not, Equal, Inf, Infeq, Sup,
Supeq;

– Data Manipulation: PushI n, PushS n, PushG n, PushL n, LOAD n, STORE n;
– Heap Operators: Alloc n, Free;
– Graphic Operators: OpenDrawingArea, Refresh, Drawline, DrawCircle e

DrawPolygon;
– I/O Operators: WriteI, WriteS, Read;
– Control Flow Operators: Jump, JZ, PushA, Call/Return.

5.2 Translation Schema

To show how do we specify the translation rules for LISS Language with an
attribute grammar, we discuss below code generation for 2 data types—complex,
and polynomial—that are implemented following different strategies; for the
second one, no Assembly code is generated. Actually, polynomials are treated at
compiler time, as it happens with.

Complex. A complex number has a real and an imaginary parts; in our case,
they are both integer numbers.
To store a complex number in the VM we chose the following representation
scheme: an heap block with 2 cells, one for the real part and the other for the
imaginary part. According to this memory map, all the operations over complex
values will access the heap block and its 2 components.



We present below the attribute grammar fragment that describes the code gen-
eration for the memory allocation and initialization related with the declaration
of a variable of type complex.

rule Complex {
COMPLEX ::= REAL SIGN IMAGINARY compute {
COMPLEX.outComments = "//Line " + REAL.outLine + ": " +

REAL.outComments + IMAGINARY.outComments;

COMPLEX.outCode = Alloc(2) +

PushGP(getAddress(COMPLEX.inSymbolTable, COMPLEX.inNameVar)) +

REAL.outCode +

Store(0) +

PushGP(getAddress(COMPLEX.inSymbolTable, COMPLEX.inNameVar)) +

PUSHI(SIGN.outCode + IMAGINARY.outCode) +

Store(1);

COMPLEX.outErrors = REAL.outErrors + IMAGINARY.outErrors;

IMAGINARY.inSymbolTable = COMPLEX.inSymbolTable; };
}
rule Real {
REAL ::= epsilon compute {

REAL.outCode = "";

REAL.outComments = REAL.outErrors = "";

REAL.outLine = epsilon.row(); }
| EXPRESSION compute {

REAL.outComments = CONSTANT.outComments;

REAL.outErrors = getTypeErrors(CONSTANT.type,"integer");

REAL.outCode = EXPRESSION.outCode;

REAL.outLine = EXPRESSION.row(); };
}
rule Imaginary {
IMAGINARY ::= epsilon compute { ... }

| EXPRESSION ’i’ compute { ... };
}

The code produced by the translation scheme above allocates 2 cells (Alloc 2)in
the heap, leaving the new address on the top of the stack ; then pushes onto the
stack the real part and stores that value on the first position of the heap block
(Store(0)); after that, executes the same process for the imaginary part.
The code generated to allocate a new complex variable, and initialize it with the
value (5-7i) is shown below.

ALLOC 2

STOREG 0

PUSHG 0

PUSHI 5

STORE 0

PUSHG 0

PUSHI -7

STORE 1



Polynomial. Consider the following polynomials defined in LISS:

p = 6x^5 - 2 + 4x^3;
q = 2x^7 - 3x^5 + 8x^4 - x^7 + 1;

In this case, the polynomials could be represented in the VM memory using
a strategy based on the heap, similar to the one discussed for complex type.
Polynomials could be implemented as a sequence of structured blocks (one per
monomial) in the heap with 2 cells, one for the coefficient and another for the
degree.
That approach requires that we compute, at compilation time, the polynomial
size (i.e., the number of monomials) because it is necessary to allocate all the
blocks at the same time (using just one Alloc operation) to guarantee that they
are continuous positions—it is a static allocation approach, similar to the one
used for arrays; otherwise, it would be necessary to adopt a dynamic allocation
approach (similar to linked lists), that requires an extra cell in each block to point
the next monomial, and a much more difficult memory management algorithm
(hard to code in Assembly). Choosing the static approach—the alternative that
sounds easier, and the more feasible from a pedagogical point of view—we get in
troubles to implement the arithmetic operations over polynomials, because the
size of the result is different from the operands and variable (depends on their
actual values), requiring extra code to compute the size at run time and allocate
it dynamically.
Taking into account that coefficient and degree are just constants5 (integer num-
bers) and that LISS Language does not include an operation to compute the
value of the polynomial at a given point, we decided to handle variables of type
Polynomial at compile time, precisely as we do with variables of type Set. So,
no memory will be allocated in the VM for polynomials, and no Assembly code
will be generated, except for the write operation.
For each variable of type Polynomial, we add to the respective entrance in the
identifier table (represented by the attribute symbolTable) an extra field that is
a linked list of pairs, where the first element is the degree of the monomial and
the second one is its coefficient. Monomials are stored in the list sorted by degree
in decreasing order; of course, the polynomial will be reduced to the canonical
form during the parsing of the its value. Therefore, the representation for the 2
polynomials, p e q above, would be:

p = [(5,6),(3,4),(0,-2)]

q = [(7,1),(5,-3),(4,8),(0,1)]

The attribute grammar fragment below formalizes code generation for Polynomial
data type in LISA, according to the translation scheme described:

rule PolynomialDefinition {
POLYNOMIAL ::= MONOMIAL compute {

POLYNOMIAL.outCode = MONOMIAL.outCode;

5 Recall above the syntax, in subsection 2.2 at page 8.



POLYNOMIAL.outComments = MONOMIAL.outComments;

POLYNOMIAL.outErrors = MONOMIAL.outErrors;

POLYNOMIAL.outSymbolTable = setExtraInfo(POLYNOMIAL.inSymbolTable,

MONOMIAL.outCode); }
| POLYNOMIAL SIGN MONOMIAL compute {

MONOMIAL.inSign = SIGN.outSign;

POLYNOMIAL[0].outComments = POLYNOMIAL[1].outComments +

SIGN.outComments +

MONOMIAL.outComments;

POLYNOMIAL[0].outErrors = POLYNOMIAL[1].outErrors +

SIGN.outErrors +

MONOMIAL.outErrors;

POLYNOMIAL[0].outCode = mergePair(POLYNOMIAL[1].outCode,

MONOMIAL.outCode); };
}
rule Monomial {

MONOMIAL ::= COEFFICIENT VARDEGREE compute {
MONOMIAL.outComments = COEFFICIENTE.outComments +

VARDEGREE.outComments;

MONOMIAL.outErrors = COEFFICIENTE.outErrors +

VARDEGREE.outErrors;

MONOMIAL.outCode = makePair(MONOMIAL.inSign,

COEFFICIENTE.outCode,

VARDEGREE.outCode); };
}

Concerning the 2 semantic rules above, we emphasize the auxiliary methods,
makePair mergePair and setExtraInfo, responsible for the creation of a new
pair degree,coefficient, for the merge of a pair into the existing list6, and for the
addition of that list to the extraInfo field of the identifier table. It is interesting
to observe the use of an inherited attribute Monomial.inSign to carry down the
coefficient sign.
Notice that the attribute outCode—of the JAVA type Object—is still used besides
the fact that we are not generating Assembly code. The same attribute is used,
however with a different semantics.

6 Conclusion

In this paper we discussed LISS Compiler: the imperative block-structured pro-
gramming language, and its compilation into Assembly of a virtual stack machine.
Such a language, equipped with an unusual and powerful type system (over inte-
gers), could be useful for teaching basic skills on programming, because it allows
to deal with multiple concepts on data-structures and algorithmic principles. But
that was not our point of view; instead we argued that this language imposes
various challenges to those who want to implement it. So we think that it is a

6 Necessary to reduce to the canonical form.



nice case-study for Compiler Courses or Compiler Development Projects. Addi-
tionally the size of its underlying grammar is reasonable to be taught during a
one semester course. Both arguments make LISS a good learning instrument.
Actually a language that allows the programmer to use, as values of primitive
types, linked lists (sequences) with a variable size, or sets with an infinite num-
ber of elements (once they are defined in comprehension), or complex numbers,
polynomials, polygons or trees, is very convenient to show that this panoply
do not requires a special processor; its implementation just needs some compi-
lation tricks, based on memory allocation decisions and the appropriate code
generation schemes.
As a second goal, we intended to show that, using a strategy to choose the at-
tributes to associate with the context-free grammar symbols, an attribute gram-
mar allows us described in a concise, coherent, systematic and clear way the
syntax and semantics of the source language and its translation-scheme. We also
emphasized the advantages of using a compiler generator like LISA, based on the
AG specification.
The last but not the least goal, was to advocate the use of a virtual machine as
a target-machine. We claimed that this approach has also a pedagogical value.
In our case, we adopted the VM stack machine with an heap, which allowed us
to implement the semantics of all our data types without difficulties.
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